Prospects of Charm Meson Measurements at the SPD

Amaresh Datta
(amaresh@jinr.ru)

DLNP, JINR
Dubna, Russia

Oct 25, 2023

From the Last Collaboration Meeting

(1) d-type contributions to A_{N}^{D} of inclusive D mesons shown
(2) statistical uncertainties for D^{0} in ideal case simulation Now extending to more realistic simulation and charged D mesons

From the Last Collaboration Meeting

(1) d-type contributions to A_{N}^{D} of inclusive D mesons shown
(2) statistical uncertainties for D^{0} in ideal case simulation
Now extending to more realistic
simulation and charged D mesons

Continuing the Saga ...

- So far neutral D meson simulation with ideal case (no vertex smearing and perfect PID) shown
- Extended study to realistic simulation with vertex smearing in generator and use of TOF (up to $p=1.5 \mathrm{GeV} / \mathrm{c}$) and AeroGel (up to $p=2.5 \mathrm{GeV} / \mathrm{c}$) for particle identification
- Also studied charged $\left(D^{+}\right)$meson
- Some details of the D^{+}simulation with realistic simulation will be shown
- One year projected statistic before and after selection criteria and resulting statistical uncertainties will be shown
- Caution : these plots assume ALL data recorded, so these uncertainties are more of a guideline than proper expected values

Simulation (Pythia8+SpdRoot) Details

- Subsystems : Beam-pipe, Inner Tracker, Straw Tracker, Magnet
- Silicon Inner Tracker: MAPS, 4 layers with end-caps
- Event vertex $(0,0,0), 30 \mathrm{~cm}$ Gaussian z-smearing
- TOF and AeroGel likelihoods used for PID
- MinBias for background study and open-charm for signal
- $D^{+} \rightarrow \pi^{+} \pi^{+} K^{-}$forced (branching ratio 9.22%)
- V0 reconstruction with KFParticle package, constrained to primary vertex
- Require at least 3 SVD hits for daughter (π, K) track candidates
- SpdVertexCombiFinder to reconstruct all combinations of (π, π, K)
- Mass window cut ($1.7-2.0 \mathrm{GeV} / \mathrm{c}^{2}$) for all

Figure Of Merit and Cuts: Decay Length

Decay Length

Decay Length

Acceped above $200 \mu \mathrm{~m}$

FOM and Cuts: Decay Length Divided by Uncertainty

Decay Length Divided by Uncertainty

Decay Length Divided by Uncertainty

Accepted above $\frac{L}{\delta_{L}}=3$
(NICA)

Other Considerations

collinearity angle V0

Accepted below $\theta_{\text {coll }}=0.3$ rad although FOM suggests $\theta_{\text {coll }}=1.84 \mathrm{rad}$ collinearity angle $=$ angle between invariant momentum (of daughter tracks) and vector from primary vertex to reconstructed decay position supposed to be small angles

Cuts to Suppress MB Background

- Decay length : $L>0.02 \mathrm{~cm}, L / d L>3.05$
- Collinearity angle : Acol $<0.3 \mathrm{rad}$
- V0 properties : $\chi_{V 0-P V}^{2}>0.5, D C A_{V 0-P V}>0.005 \mathrm{~cm}$
- Daughter track properties :
- $D C A_{\pi-K}<0.012 \mathrm{~cm}$, opening angle $O A<1.5 \mathrm{rad}$
- Daughter to PV : $\chi_{d-P V}^{2}>2.5, D C A_{d-P V}>0.012 \mathrm{~cm}$
- Daughter to V0: $D C A_{d-V 0}<0.01 \mathrm{~cm}$
- Invariant mass window $1.7-2.0 \mathrm{GeV} / \mathrm{c}^{2}$
- $\left|x_{F}\right|>0.2$ for asymmetry measurements

D^{+}Study : MC Before and After Selection

Invariant Mass After Cuts

Realistic MC study of D^{+}reconstruction and background : 20 Million open-charm and 80 Million minbias events generated Left : reconstructed invariant mass spectra, $215964 D^{+}, 3.657 \times 10^{6}$ random bkg Right : selected invariant mass spectra, $1420 D^{+}, 2$ random bkg After $\left|x_{F}\right|>0.2$ cut, $138 D^{+}$and no background survive

Some Relevant Numbers

- Following CDR estimates for projected statistics :
- $D^{0} \rightarrow \pi^{+} K^{-}: 360 \mathrm{M}$ in 1 year
- $D^{+} \rightarrow \pi^{+} \pi^{+} K^{-}: 520 \mathrm{M}$ in 1 year
- D^{0} decay channel branching ratio $=3.89 \%$
- D^{+}decay channel branching ratio $=9.22 \%$
- In the open-charm events generated with Pythia8, 54.4\% events have D^{0} 's and 20% events have D^{+}'s
- All these are taken into account when scaling MC to data for one year
$(\mathrm{NITAM}$

Example of MC to Data Scaling

- D^{+}in $\mathrm{MC}: 20 \mathrm{M} \times 0.2 \times 0.0922=368800$
- D^{+}in data : 520 M (CDR : in one year)
- Signal scale : 1410 (for projected total reconstructed counts)
- MinBias in MC : 80 M
- MinBias in data : 32800 B (32.8 mb cross-section and $1 \mathrm{fb}^{-1}$ integrated luminosity for one year)
- Background scale : 410000 (for projected total reconstructed counts)
- Scale for selection criteria : 0.66% for $D^{+}, 5.47 \times 10^{-7}$ for MB
- Scale for $\left|x_{F}\right|>0.2$ cut : 10% for $D^{+}, 37 \%$ for MB
- Final scale factors : 0.93 for $D^{+}, 0.08$ for MB (after all selections)

Prescription for SSA (and uncertainty) Calculation

Figure 1: Illustrative plot from PHENIX : π^{0} (above) and η (below) from di-photon invariant mass spectra

- Following the standard practice at STAR, PHENIX and COMPASS:
- From invariant mass spectra in azimuthal (ϕ) slices, define signal region (often 2σ around the peak), count total, calculate raw asymmetry (and uncertainty)
- Far from signal peak, count pure background, calculate background asymmetry (and uncertainty)
- Correct 'raw' asymmetry with background asymmetry (and relative contribution) to extract 'signal' asymmetry (and uncertainty)

Now Some Explicit Equations

Transverse Single Spin Asymmetry :

$$
A_{N}(\phi)=\frac{1}{P\langle | \cos (\phi)| \rangle} \frac{N(\phi)-\mathcal{R} \cdot N(\phi+\pi)}{N(\phi)+\mathcal{R} \cdot N(\phi+\pi)}
$$

where P is beam polarization, $\langle | \cos (\phi)\left\rangle=\frac{\int_{\phi_{1}}^{\phi_{2}} \cos (\phi) d \phi}{\phi_{2}-\phi_{1}}\right.$ is the average of the cosine of azimuth in the ϕ bin, \mathcal{R} is relative luminosity for opp. pol. dir. of beam, N 's are counts in ϕ bins. One can use $N(\phi)=N_{L}$ and $N(\phi+\pi)=N_{R}$ for left and right as simplified notation

Statistical Uncertainty of SSA (propagation of error assuming two independent variables $N(\phi)$ and $N(\phi+\pi))$:

$$
\sigma_{A_{N}}(\phi)=\frac{1}{P\langle | \cos (\phi)| \rangle} \frac{2 \mathcal{R} \cdot N(\phi) \cdot N(\phi+\pi)}{(N(\phi)+\mathcal{R} N(\phi+\pi))^{2}} \sqrt{\left(\frac{\sigma_{N(\phi)}}{N(\phi)}\right)^{2}+\left(\frac{\sigma_{N(\phi+\pi)}}{N(\phi+\pi)}\right)^{2}}
$$

Simplifications

Assume $\mathcal{R} \sim 1, N(\phi) \sim N(\phi+\pi)=N$ where N is the count of candidates in a ϕ bin ($N=N_{\text {detected }} / n$ if you have n bins in azimuth) and assume Poisson distribution of counts (so that $\sigma_{N}=\sqrt{N}$)
Simplified version of statistical uncertainty of SSA :

$$
\sigma_{A_{N}}(\phi)=\frac{1}{P\langle | \cos (\phi)| \rangle} \frac{1}{\sqrt{2 N}}
$$

Finally: The Signal

Corrected signal SSA :

$$
A_{N}^{S i g}(\phi)=\frac{A_{N}^{\text {Raw }}(\phi)-r \cdot A_{N}^{B k g}(\phi)}{1-r}
$$

where $r=\frac{N_{B k g}}{N_{\text {raw }}}$ is background contribution to raw/total count under the signal peak

Corrected signal statistical uncertainty of SSA :

$$
\sigma_{A_{N}^{\text {sig }}}(\phi)=\frac{\sqrt{\sigma_{A_{N}^{\text {Raw }}}^{2}(\phi)+r^{2} \sigma_{A_{N}^{\text {Bkg }}}^{2}(\phi)}}{1-r}
$$

Procedure

- After background suppression cuts, scale MC counts of signals in x_{F} bins to get counts in 1 year of data
- Using S/B ratio from analysis, estimate raw/total and background counts - done because we lack enough bkg MC to get bkg count directly
- For each x_{F} bin, distribute N_{t} and N_{b} in 12ϕ bins, estimate raw and background uncertainties in each ϕ bin
- For each pair of $(\phi, \phi+\pi)$ bins, extract corrected signal uncertainty $\sigma_{A_{N}}(\phi)$
- For x_{F} bin, combine uncertainties for independent measurements in 6 (pairs of left-right) ϕ bins

$$
\sigma_{A_{N}}\left(x_{F}\right)=\frac{1}{\sqrt{\sum_{i=1}^{6} \frac{1}{\sigma_{A_{N}}^{2}\left(\phi_{i}\right)}}}
$$

- Next: scaled spectra and projected statistical uncertainties for 4 cases: D^{0} ideal and realistic MC, D^{+}ideal and realistic MC

Efficiency of Selection Criteria : Projected for 1 Year of Data : D^{0} Ideal Case

- Properly scaled this time ...
- Fitted with two Gaussians for signal
+ linear function for background
- S / B for entire mass range $=0.12$
(NICA)
- S / B for 2σ mass window $=20$

Projected Statistical Uncertainties: D^{0} Ideal Case

- Two changes/corrections form the plot shown before (bottom left):
- Wrong scaling in the last calculation (BR and x_{F} cut applied twice)
- Major difference: S/B ratio, used $1 / 8$ before, now using 20 (affects uncertaincy directly through $r=B /(S+B))$

Projected Statistical Uncertainties: D^{0} Ideal Case

- Two changes/corrections form the plot shown before (bottom left):
- Wrong scaling in the last calculation (BR and x_{F} cut applied twice)
- Major difference: S/B ratio, used $1 / 8$ before, now using 20 (affects uncertaincy directly through $r=B /(S+B))$

Efficiency of Selection Criteria : Projected for 1 Year of Data : D^{0} Realistic Case

Projected Statistical Uncertainties: D^{0} Realistic Case

(NICA

Efficiency of Selection Criteria: Projected for 1 Year of Data : D^{+}Ideal Case

Projected Statistical Uncertainties: D^{+}Ideal Case

Efficiency of Selection Criteria : Projected for 1 Year of Data : D^{+}Realistic Case

Projected Statistical Uncertainties : D^{+}Realistic Case

Summary

- Background suppression seems on the right tracks
- Uncertainties shown here assume perfect data recording, therefore DAQ performance (and software event selection) needs to be taken into account
- Counts after cuts are not statistically meaningful yet
- Trying tighter cuts is impossible with zero counts after selections from limited MC sample
- For all 4 sets of studies, produced more than 250 Million events
- Fine tuning of cuts have to wait till large MC samples are available from software/production team
- Plan to look into the effects of track reconstruction efficiency and TOF performance into D meson reconstruction

Backup

Generated Event Vertex Smearing

$$
\begin{gathered}
\sigma_{x}=\sigma_{y}=1 \mathrm{~mm} \\
\sigma_{z}=30 \mathrm{~cm}
\end{gathered}
$$

Vertex Z distribution probably distorted because the distribution shown here are only for events with reconstructed $\pi^{+} \pi^{+} K^{-}$invariant mass within

$$
1.7-2.0 \mathrm{GeV} / \mathrm{c}^{2}
$$

