Prospects of Charm Meson Measurements at the SPD

Amaresh Datta (amaresh@jinr.ru)

> DLNP, JINR Dubna, Russia

Oct 25, 2023

Amaresh Datta (amaresh@jinr.ru) (JINR) Prospects of Charm Meson Measurements at

From the Last Collaboration Meeting

From the Last Collaboration Meeting

Amaresh Datta (amaresh@jinr.ru) (JINR) Prospects of Charm Meson Measurements at

Continuing the Saga ...

- So far neutral *D* meson simulation with ideal case (no vertex smearing and perfect PID) shown
- Extended study to realistic simulation with vertex smearing in generator and use of TOF (up to p = 1.5 GeV/c) and AeroGel (up to p = 2.5 GeV/c) for particle identification
- Also studied charged (D^+) meson
- Some details of the D^+ simulation with realistic simulation will be shown
- One year projected statistic before and after selection criteria and resulting statistical uncertainties will be shown
- Caution : these plots assume ALL data recorded, so these uncertainties are more of a guideline than proper expected values

・ロト ・ 同ト ・ ヨト ・ ヨト

Simulation (Pythia8+SpdRoot) Details

- Subsystems : Beam-pipe, Inner Tracker, Straw Tracker, Magnet
- Silicon Inner Tracker : MAPS, 4 layers with end-caps
- Event vertex (0,0,0), 30 cm Gaussian z-smearing
- TOF and AeroGel likelihoods used for PID
- MinBias for background study and open-charm for signal
- $D^+ \rightarrow \pi^+ \pi^+ K^-$ forced (branching ratio 9.22%)
- V0 reconstruction with KFParticle package, constrained to primary vertex
- Require at least 3 SVD hits for daughter (π, K) track candidates
- SpdVertexCombiFinder to reconstruct all combinations of (π, π, K)
- Mass window cut (1.7 2.0 GeV/ c^2) for all

Figure Of Merit and Cuts : Decay Length

Amaresh Datta (amaresh@jinr.ru) (JINR) Prospects of Charm Meson Measurements at Oct 25, 2023

FOM and Cuts : Decay Length Divided by Uncertainty

Amaresh Datta (amaresh@jinr.ru) (JINR) Prospects of Charm Meson Measurements at

Other Considerations

Accepted below $\theta_{coll} = 0.3$ rad although FOM suggests $\theta_{coll} = 1.84$ rad collinearity angle = angle between invariant momentum (of daughter tracks) and vector from primary vertex to reconstructed decay position - supposed to be small angles

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Cuts to Suppress MB Background

- Decay length : L > 0.02 cm, L/dL > 3.05
- Collinearity angle : Acol < 0.3 rad
- V0 properties : $\chi^2_{V0-PV} > 0.5$, $DCA_{V0-PV} > 0.005$ cm
- Daughter track properties :
- $DCA_{\pi-K} < 0.012$ cm, opening angle OA < 1.5 rad
- Daughter to PV : $\chi^2_{d-PV} > 2.5$, $DCA_{d-PV} > 0.012$ cm
- Daughter to V0 : $DCA_{d-V0} < 0.01$ cm
- Invariant mass window 1.7-2.0 ${\rm GeV}/c^2$
- $|x_F| > 0.2$ for asymmetry measurements

8/27

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

D^+ Study : MC Before and After Selection

 $\begin{array}{c} \mbox{Realistic MC study of } D^+ \mbox{ reconstruction and background :} \\ 20 \mbox{ Million open-charm and 80 Million minbias events generated} \\ \mbox{Left : reconstructed invariant mass spectra, 215964 } D^+, 3.657 \times 10^6 \mbox{ random bkg} \\ \mbox{ Right : selected invariant mass spectra, 1420 } D^+, 2 \mbox{ random bkg} \\ \mbox{ After } |x_F| > 0.2 \mbox{ cut, 138 } D^+ \mbox{ and no background survive} \end{array}$

Some Relevant Numbers

- Following CDR estimates for projected statistics :
- $D^0 \rightarrow \pi^+ K^-$: 360 M in 1 year
- $D^+
 ightarrow \pi^+ \pi^+ K^-$: 520 M in 1 year
- D^0 decay channel branching ratio = 3.89%
- D^+ decay channel branching ratio = 9.22%
- In the open-charm events generated with Pythia8, 54.4% events have D⁰'s and 20% events have D⁺'s
- All these are taken into account when scaling MC to data for one year

Example of MC to Data Scaling

- D^+ in MC : 20 M \times 0.2 \times 0.0922 = 368800
- D⁺ in data : 520 M (CDR : in one year)
- Signal scale : 1410 (for projected total reconstructed counts)
- MinBias in MC : 80 M
- MinBias in data : 32800 B (32.8 mb cross-section and 1 fb⁻¹ integrated luminosity for one year)
- Background scale : 410000 (for projected total reconstructed counts)
- Scale for selection criteria : 0.66% for D^+ , 5.47 imes 10^{-7} for MB
- Scale for $|x_F| > 0.2$ cut : 10% for D^+ , 37% for MB
- Final scale factors : 0.93 for D^+ , 0.08 for MB (after all selections)

Prescription for SSA (and uncertainty) Calculation

Figure 1: Illustrative plot from PHENIX : π^0 (above) and η (below) from di-photon invariant mass spectra

- Following the standard practice at STAR, PHENIX and COMPASS:
- From invariant mass spectra in azimuthal (ϕ) slices, define signal region (often 2σ around the peak), count total, calculate raw asymmetry (and uncertainty)
- Far from signal peak, count pure background, calculate background asymmetry (and uncertainty)
- Correct 'raw' asymmetry with background asymmetry (and relative contribution) to extract 'signal' asymmetry (and uncertainty)

- 3 ▶

Now Some Explicit Equations

Transverse Single Spin Asymmetry :

$$A_{N}(\phi) = \frac{1}{P\langle |\cos(\phi)| \rangle} \frac{N(\phi) - \mathcal{R}.N(\phi + \pi)}{N(\phi) + \mathcal{R}.N(\phi + \pi)}$$

where *P* is beam polarization, $\langle |cos(\phi)| \rangle = \frac{\int_{\phi_1}^{\phi_2} cos(\phi) d\phi}{\phi_2 - \phi_1}$ is the average of the cosine of azimuth in the ϕ bin, \mathcal{R} is relative luminosity for opp. pol. dir. of beam, N's are counts in ϕ bins. One can use $N(\phi) = N_L$ and $N(\phi + \pi) = N_R$ for left and right as simplified notation

Statistical Uncertainty of SSA (propagation of error assuming two independent variables $N(\phi)$ and $N(\phi + \pi)$):

$$\sigma_{\mathcal{A}_{\mathcal{N}}}(\phi) = \frac{1}{P\langle |cos(\phi)|\rangle} \frac{2\mathcal{R}.\mathcal{N}(\phi).\mathcal{N}(\phi+\pi)}{(\mathcal{N}(\phi)+\mathcal{R}\mathcal{N}(\phi+\pi))^2} \sqrt{(\frac{\sigma_{\mathcal{N}(\phi)}}{\mathcal{N}(\phi)})^2 + (\frac{\sigma_{\mathcal{N}(\phi+\pi)}}{\mathcal{N}(\phi+\pi)})^2}$$

Simplifications

Assume $\mathcal{R} \sim 1$, $N(\phi) \sim N(\phi + \pi) = N$ where N is the count of candidates in a ϕ bin ($N = N_{detected}/n$ if you have n bins in azimuth) and assume Poisson distribution of counts (so that $\sigma_N = \sqrt{N}$)

Simplified version of statistical uncertainty of SSA :

$$\sigma_{\mathcal{A}_{\mathcal{N}}}(\phi) = rac{1}{P\langle |cos(\phi)|
angle} rac{1}{\sqrt{2N}}$$

ヘロト 不得 トイヨト イヨト 二日

14 / 27

Finally : The Signal

Corrected signal SSA :

$$A_N^{Sig}(\phi) = \frac{A_N^{Raw}(\phi) - r.A_N^{Bkg}(\phi)}{1 - r}$$

where $r = \frac{N_{Bkg}}{N_{raw}}$ is background contribution to raw/total count under the signal peak

Corrected signal statistical uncertainty of SSA :

$$\sigma_{A_{N}^{Sig}}(\phi) = \frac{\sqrt{\sigma_{A_{N}^{Raw}}^{2}(\phi) + r^{2}\sigma_{A_{N}^{Bkg}}^{2}(\phi)}}{1 - r}$$

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Procedure

- After background suppression cuts, scale MC counts of signals in x_F bins to get counts in 1 year of data
- Using S/B ratio from analysis, estimate raw/total and background counts done because we lack enough bkg MC to get bkg count directly
- For each x_F bin, distribute N_t and N_b in 12 ϕ bins, estimate raw and background uncertainties in each ϕ bin
- For each pair of $(\phi, \phi + \pi)$ bins, extract corrected signal uncertainty $\sigma_{A_N}(\phi)$
- For x_F bin, combine uncertainties for independent measurements in 6 (pairs of left-right) φ bins

$$\sigma_{A_N}(x_{ extsf{F}}) = rac{1}{\sqrt{\sum\limits_{i=1}^6 rac{1}{\sigma_{A_N}^2(\phi_i)}}}$$

 Next : scaled spectra and projected statistical uncertainties for 4 cases : D⁰ ideal and realistic MC, D⁺ ideal and realistic MC

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Efficiency of Selection Criteria : Projected for 1 Year of Data : D^0 Ideal Case

- Properly scaled this time ...
- Fitted with two Gaussians for signal + linear function for background

Image: A = 1 = 1

- S/B for entire mass range = 0.12
- **NICA** S/B for 2σ mass window = 20

Projected Statistical Uncertainties : D⁰ Ideal Case

- Two changes/corrections form the plot shown before (bottom left):
- Wrong scaling in the last calculation (BR and x_F cut applied twice)
- Major difference : S/B ratio, used 1/8 before, now using 20 (affects uncertaincy directly through r = B/(S + B))

< □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷
 At Oct 25, 2023

Projected Statistical Uncertainties : D⁰ Ideal Case

- Two changes/corrections form the plot shown before (bottom left):
- Wrong scaling in the last calculation (BR and x_F cut applied twice)
- Major difference : S/B ratio, used 1/8 before, now using 20 (affects uncertaincy directly through r = B/(S+B))

Efficiency of Selection Criteria : Projected for 1 Year of Data : D^0 Realistic Case

Projected Statistical Uncertainties : D⁰ Realistic Case

・ロト ・ 同ト ・ ヨト ・ ヨト

Efficiency of Selection Criteria : Projected for 1 Year of Data : D^+ Ideal Case

Projected Statistical Uncertainties : D⁺ Ideal Case

・ロト ・ 同ト ・ ヨト ・ ヨト

Efficiency of Selection Criteria : Projected for 1 Year of Data : D^+ Realistic Case

-47 ▶

Amaresh Datta (amaresh@jinr.ru) (JINR) Prospects of Charm Meson Measurements at Oct 25, 2023 23/27

Projected Statistical Uncertainties : D^+ Realistic Case

・ロト ・ 同ト ・ ヨト ・ ヨト

- Background suppression seems on the right tracks
- Uncertainties shown here assume perfect data recording, therefore DAQ performance (and software event selection) needs to be taken into account
- Counts after cuts are not statistically meaningful yet
- Trying tighter cuts is impossible with zero counts after selections from limited MC sample
- For all 4 sets of studies, produced more than 250 Million events
- Fine tuning of cuts have to wait till large MC samples are available from software/production team
- Plan to look into the effects of track reconstruction efficiency and TOF performance into D meson reconstruction

A ∃ >

Backup

 Amaresh Datta
 (amaresh@jinr.ru)
 (JINR)
 Prospects of Charm Meson Measurements at
 Oct 25, 2023

<ロト <問ト < 目と < 目と

Generated Event Vertex Smearing

Vertex Z distribution probably distorted because the distribution shown here are only for events with reconstructed $\pi^+\pi^+K^-$ invariant mass within $1.7 - 2.0 \text{ GeV}/c^2$

・ロト ・ 同ト ・ ヨト ・ ヨト