Report on Samara group activity

V. Saleev 1,2

¹ Samara National Research University
² Joint Institute for Nuclear Research

25 October 2023 Samara University, Samara

Talk at the SPD Collaboration meeting, 2023

Outline

- Samara University group
- JINR grant reports
- Publications
- Future plans

Samara University group

The activity of six students (*) are supported by JINR grants

- Saleev V. group leader
- Shipilova A. scientist
- Karpishkov A. scientist

0

- Alimov L.* master's student, diploma
- Anufriev A.* master's student, diploma
- Shilyaev K.* master's student, diploma
- Morozova S.* master's student
- Ospennikov N.* master's student
- 0
- Chernyshev A.* undergraduate student, diploma
- Omelyanchuk S undergraduate student, diploma

Samara University group

Samara University group

Theory

- Hard processes at the SPD NICA energies (production of charmonium states, D-mesons and prompt photons) in the Parton Model
- Perturbative QCD calculations
- Factorization approaches: CPM, GPM, TMD PM, PRA
- Heavy quark hadronization mechanisms
- Production of polarized J/ψ
- TMD PDFs in polarized and unpolarized pp-collisions

Modeling

- Signal/Background ratio using PYTHIA
- Time slice simulation and event reconstruction using GEANT4
- Modeling in the TMD PM using KaTie

Talks at the current SPD Meeting

- Anufriev A.:On η_c production at the SPD NICA
- Alimov L. and Ospennikov N.: Associated $J/\psi + \gamma$ production at the SPD NICA
- Shipilova A. and Morozova S.: Time slice simulation and event reconstruction

In my talk

- Pair J/ψ production in the ICEM using KaTie (*Chernyshev A.*)
- Polarized J/ψ production in the NRQCD (*Shilyaev K.*)

Pair production of J/ψ in pp and $\pi^- p$ collisions at the energy $\sqrt{s} = 20 - 30$ GeV

Data for pair J/ψ production from $\sqrt{s} = 17$ GeV up to 13 TeV:

Collaboration	Initial state	Energy	
NA3, 1982	π^{-A}	$\sqrt{s} = 17 \text{ GeV}$	• NA3, 1985: $N_{\rm ev} = 15 \pm 4$
NA3, 1985	pA	$\sqrt{s} = 27 \mathrm{GeV}$	No data on differential cross sections
CDF, 2014	pp	$\sqrt{s} = 1.96$ TeV	• COMPASS, 2022:
LHCb, 2011, 2017, 2023	рр	$\sqrt{s} = 7, 13, 13$ TeV	$N_{\rm ev}^{\rm NH_3} = 25 \pm 1$
CMS, 2014	рр	$\sqrt{s} = 7$ TeV	$N_{\rm ev}^{\rm Al} = 1$
ATLAS, 2017, 2023	рр	$\sqrt{s} = 8,13$ TeV	$N_{\rm ev}^{\rm w}=5$
COMPASS, 2022	π^{-A}	$\sqrt{s} = 19 \text{ GeV}$	In all cases: $x_F^{\Psi} > 0$.

Processes of pair J/ψ production is a good tool to study hadronization of heavy quarkonia.

Model for pair J/ψ production

Color Evaporation Model (CEM)_[Fritzsch and Halzen '77] \hookrightarrow Improved CEM (ICEM)_[Ma and Vogt '16] Cross section for single J/ψ production (using Parton Reggeization Approach_[Nefedov, Saleev, and Shipilova '13]):

$$d\sigma_{J/\psi} = \mathscr{F}^{\psi} \times \sum_{a,\bar{b}} \int_{M_{\psi}}^{2M_{D}} dM \ \left[\theta(M - M_{\mathcal{Q}}) - \theta(M - 2M_{H}) \right] \ \left(\Phi_{1} \ \Phi_{2} \right) \otimes d\hat{\sigma}_{ab \to c\bar{c}}$$

where $\Phi_i = \Phi_{a/h_i}(x_i, t_i, \mu)$. Previously we find that \mathscr{F}^{Ψ} is strongly depend on energy $\sqrt{s}_{[Chemyshev and V.S. '22]}$.

In case of pair
$$J/\psi$$
 production: $d\sigma_{2J/\psi} = d\sigma_{2J/\psi}^{\rm SPS} + d\sigma_{2J/\psi}^{\rm DPS}$

• SPS master formula:

$$d\sigma_{2J/\psi}^{\text{SPS}} = \mathscr{F}^{\psi\psi} \times \sum_{a,\bar{b}} \prod_{i=1,2} \int_{M_{\psi}}^{2M_{D}} dM_{i} \left[\theta(M_{i} - M_{\mathscr{Q}}) - \theta(M_{i} - 2M_{H}) \right] \left(\Phi_{1} \ \Phi_{2} \right) \otimes d\hat{\sigma}_{ab \to c\bar{c}c\bar{c}c\bar{c}}$$

with $\mathscr{F}^{\psi} \simeq \mathscr{F}^{\psi}$ [Chernyshev and V.S. '22].

• DPS pocket formula:

$$d\sigma_{2J/\psi}^{\text{DPS}} = (\mathscr{F}^{\psi})^2 \times \frac{1}{2 \sigma_{\text{eff}}} \times \sum_{a,\bar{b}} \prod_{i=1,2} \int_{M_{\psi}}^{2M_D} dM_i \left[\theta(M_i - M_{\mathscr{Q}}) - \theta(M_i - 2M_H) \right] (\Phi_1 \ \Phi_2) \otimes d\hat{\sigma}_{ab \to c\bar{c}},$$

here $\sigma_{\rm eff}$ is a free parameter which controls the contribution of the DPS fixed early[Chernyshev and V.S. (22.23]. 9/19

Pair J/ψ production in the ICEM

А	$\sigma^{exp} \pm (stat.) \pm (syst.)$ [pb]	$\sigma^{ ext{theor}}$ [pb]	$\sigma^{ m SPS}$ [pb]	$\sigma^{ m DPS}$ [pb]			
NA3, 1985, pA , $\sqrt{s} = 27$ GeV							
Pt	27.0 ± 10.0	$5.0^{+38.1}_{-4.4}$	$3.1\substack{+20.0\\-2.6}$	$1.9^{+18.1}_{-1.8}$			
COMPASS ¹ , 2022, π^-A , $\sqrt{s} = 23$ GeV							
NH ₃	$10.7 \pm 2.3 \pm 3.2$	$1.260\substack{+3.811\\-0.975}$	$0.925\substack{+2.300 \\ -0.640}$	$0.335\substack{+1.511\\-0.235}$			
Al	$3.6 \pm 8.2 \pm 1.4$	$1.202\substack{+3.664\\-0.833}$	$0.882\substack{+2.224\\-0.610}$	$0.320\substack{+1.440 \\ -0.223}$			
W	$3.3 \pm 3.0 \pm 1.8$	$1.173\substack{+3.545\\-0.814}$	$0.861\substack{+2.140 \\ -0.595}$	$0.312\substack{+1.405 \\ -0.219}$			

Table 1: Comparison of theoretical and experimental total cross sections for pair J/ψ production in pA and π^- collisions.

Conclusions:

- The big theoretical uncertainty from choice of the hard scale μ in case pair J/ψ production is founded;
- Our predictions with 𝒴ΨΨ = 𝔅Ψ = 0.327 for pair J/Ψ production cross section approximately agree with COMPASS data for Al and W targets and underestimate data for NH3 data by one order;
- More data should be analyzed, it is necessary to evaluate the possibility of extracting data on pair J/ψ production at future SPD experiment.

¹For details see Talk at the 3rd COMPASS «Analysis Phase» mini-workshop, 19 April 2023 by V. Saleev.

Pair J/ψ production in the ICEM

Figure 4: Polarized prompt J/ψ production at $\sqrt{s} = 200$ GeV.

Figure 6: Polarized prompt J/ψ production at $\sqrt{s} = 27$ GeV.

Publications, 2022-2023

- V. A. Saleev and A. V. Shipilova, "Double Longitudinal-Spin Asymmetries in Direct Photon Production at NICA," Phys. Part. Nucl. Lett. 20 (2023) no.3, 400-403
- V. A. Saleev and A. A. Chernyshev, "Pair Production of J/ψ in the Color Evaporation Model and the Parton Reggeization Approach," Phys. Part. Nucl. Lett. **20** (2023) no.3, 389-394
- A. Guskov, A. Datta, A. Karpishkov, I. Denisenko and V. Saleev, "Probing Gluons at the Spin Physics Detector,"[arXiv:2304.04604 [hep-ex]].
- A. Karpishkov and V. Saleev, "On Transverse Single-Spin Asymmetries in D-Meson Production at the SPD NICA Experiment," Phys. Part. Nucl. Lett. 20 (2023) no.3, 360-363
- V. A. Saleev and A. V. Shipilova, "Gluon Sivers Function in Transverse Single-Spin Asymmetries of Direct Photons at NICA," Phys. Atom. Nucl. 85 (2022) no.6, 737-747
- A. Anufriev, V. Saleev, Production of η_c mesons at high energy in proton-proton collisions, submitted to PEPAN
- L. Alimov, V. Saleev, Associated $J/\psi + \gamma$ production in high-energy limit of QCD, submitted to PEPAN
- V. Saleev and K. Shilyaev, Prompt polarized J/ψ production at the SPD NICA in NRQCD, submitted to Vestnik Samara University
- A. Karpishkov, V. Saleev and K. Shilyaev, Production of prompt polarized J/ψ in the NRQCD and Generalized Parton Model, submitted to Phys. Atom. Nucl.

Future plans, 2024

- Polarized J/ψ production in the ICEM
- ullet Double Longitudinal-Spin Asymmetries in J/ψ and $D-{\sf meson}$ production
- Hard processes in the "exact" TMD PM
- Gluon Boer-Mulders TMD PDF in different hard processes

0

- Signal/Backgruond ratio: prompt photon, $J/\psi + \gamma$, η_c
- Time slice simulation
- Implementation of TMD PDF in KaTie

Thank you for your attention!