MPD trigger efficiency in the fixed target mode

V. Riabov

Fixed target configurations

• With a target located at z = -150 cm

• With a target located at z = -115 cm

Ebeam	$\sqrt{s_{NN}}$ collider mode	√ <i>s_{NN}</i> FXT mode	ηсм	CMS coverage
2.0	4	2.4	0.7	-0.8; 0.8 (2.1)
5.5	11	3.5	1.23	-1.33; 0.27 (1.57)

Item	Dimension
Length of the TPC	340 cm
Outer radius of vessel	140 cm
Inner radius of vessel	27 cm
Outer radius of the drift volume	133 cm
Inner radius of the drift volume	34 cm
Length of the drift volume	163 cm (of each half)

Trigger efficiency simulation

- Request 26 configuration
- DCM-QGSM-SMM is run in FXT mode at two energies: $E_{lab} = 2.0 \cdot A \text{ GeV}$ and $E_{lab} = 5.5 \cdot A \text{ GeV}$
- Two target positions were considered:
 - ✓ $x = 0, y = 0, z = -150 \text{ cm} \rightarrow \text{full detector configuration, all FFD-W materials changed to air (no detector)}$
 - ✓ $x = 0, y = 0, z = -115 \text{ cm} \rightarrow \text{full detector configuration}$
- 30,000 events for each energy and target location
- Three subsystems for trigger formation:
 - ✓ FFD-E (FFD-W ignored)
 - ✓ FHCAL-E (FHCAL-W ignored)
 - ✓ TOF, use fast logical signals from 280 MRPCs (fires if at least one hit detected in the whole MRPC chamber)

Particle composition

V. Riabov, Cross-PWG Meeting, 30.05.2023

Trigger efficiency, E = 2 AGeV, $Z_{vertex} = -150 \text{ cm}$

- Efficiency:
- ✓ FFD: 74, 78, 82, 88%
- ✓ FHCAL: 96, 96, 97, 98%
- ✓ FFD|FHCAL: 98%
- ✓ TOF: 91, 93, 95, 98%

• Trigger efficiency is comparable or better than that in the collider mode at top NICA energies

Trigger efficiency, E = 2 AGeV, $Z_{vertex} = -115 \text{ cm}$

- Efficiency:
- ✓ FFD: 74, 78, 82, 88%
- ✓ FHCAL: 95, 96, 97, 98%
- ✓ FFD|FHCAL: 98%
- ✓ TOF: 91, 93, 95, 98%

• Marginal dependence on the target position

Trigger efficiency, E = 5.5 AGeV, $Z_{vertex} = -150 \text{ cm}$

- Efficiency:
- ✓ FFD: 83, 85, 88, 92%
- ✓ FHCAL: 96, 96, 97, 98%
- ✓ FFD|FHCAL: 98%
- ✓ TOF: 94, 96, 97, 99%

- Trigger efficiency is comparable or better than that in the collider mode at top NICA energies
- Trigger efficiency is higher at higher beam energy for the FFD and TOF, ~ same for the FHCAL

Trigger efficiency, E = 5.5 AGeV, $Z_{\text{vertex}} = -115 \text{ cm}$

- Efficiency:
- ✓ FFD: 82, 84, 88, 92%
- ✓ FHCAL: 96, 96, 97, 98%
- ✓ FFD|FHCAL: 98%
- ✓ TOF: 94, 96, 97, 99%

• Marginal dependence on the target position

FFD: $T0 = T_{FFD} - L/c$

E = 2 AGeV: •

٠

-0.5

protons??? 0.5 1.5 T0 (ns) Time resolution

- ٠ 50 0.01 0 12 14 16 b (fm)
- Good T0 resolution at higher beam energy with $\sigma \sim 50$ ps, large centrality bias ٠
- Smearing of T0 at lower beam energies ٠

16 b (fm)

14

Vertex reconstruction: $z_{rec} = Z_{FFD-E} - T_{FFD} \cdot c$

• E = 2 AGeV:

- Good vertex resolution at higher beam energy with $\sigma \sim 50$ ps, large centrality bias
- No precise vertexing at lower beam energies

Vertex reconstruction: $z_{rec} = Z_{FHCAL} - T_{FHCAL} \cdot c$

E = 2 AGeV: •

Resolution (cm) ÷. b (fm)

Vertex resolution

Conclusions

- MPD trigger system based on the FFD. FHCAL and TOF provides high efficiency in the FXT mode
- Potential problems with T0 and vertex at lower beam energies

BACKUP

V. Riabov, Cross-PWG Meeting, 30.05.2023