First look at Charge Balance Functions in $\mathrm{Bi}+\mathrm{Bi}$ collisions at 9.2 GeV with MPD

A.Chernyshov, I.Lokhtin

Skobeltsyn Institute of Nuclear Physics
Moscow State University
on behalf of PWG3
(Correlations \& Fluctuations)

13 June 2023

Motivation for the analysis

The law of charge conservation establishes strong correlations between charged particles and their momenta. To study these correlations, among other observables, the Charge Balance Function (CBF) is proposed. The function is sensitive to the time the correlation was established and thus provides information on hadronization time point. In hydrodynamic approach the CBF width is proportional to the inverse strength of the collective flow in the system allowing to estimate collective effects as well. All that raises a question whether the CBF is dependent on the phase transition type providing great opportunity for the Monte-Carlo study within the MPD.

General formalism of Charge Balance Functions

Charge is locally conserved in heavy-ion collisions. Correlations between balancing charges (electric charge, baryon number, and strangeness) can be studied by measuring charge balance functions. They represent the probability, given the observation of a charge q, of seeing its balancing charge $-q$ at some relative rapidity Δy and relative azimuthal angle $\Delta \varphi$.

One of the definitions of the charge balance function [Phys.Rev.C 104, 014906 (2021)] is given bellow $B(\Delta y, \Delta \varphi)=\frac{1}{2} \int d y_{1} d \varphi_{1} d y_{2} d \varphi_{2} \delta\left(y_{1}-y_{2}-\Delta y\right) \delta\left(\varphi_{1}-\varphi_{2}-\Delta \varphi\right)\left\{\frac{P_{p n}-P_{p p}}{P_{p}}+\frac{P_{n p}-P_{n n}}{P_{n}}\right\}$, $\frac{P_{p n}}{P_{p}}=\frac{P_{p n}\left(y_{1}, \varphi_{1} ; y_{2}, \varphi_{2}\right)}{P_{p}\left(y_{1}, \varphi_{1}\right)} \begin{aligned} & \text { represents the conditional probability density for observing a negative } \\ & \text { charge at }\left(y_{2}, \varphi_{2}\right) \text {, given a positive charge at }\left(y_{1}, \varphi_{1}\right) \text { is observed. Other } \\ & \text { members are defined similarly. }\end{aligned}$

Charge balance function can be characterized by its width defined as follows

$$
\langle\Delta \eta\rangle=\frac{\sum_{i} B_{i} \Delta \eta_{i}}{\sum_{i} B_{i}}-\text { rapidity width } \quad\langle\Delta \varphi\rangle=\frac{\sum_{i} B_{i} \Delta \varphi_{i}}{\sum_{i} B_{i}}-\text { azimuthal width }
$$

Charge balance function widths provide information on charge separation time. For instance, long range correlations (wide distribution) display early charge separation, and vice versa late charge separation leads to a narrower distribution, i.e. short range correlations.

Experimental intricacies of CBF calculation

$B(\Delta \eta, \Delta \varphi)=\frac{1}{2}\left\{\frac{1}{N^{(p)}} \frac{d^{2} N^{(p n)}(\Delta \eta, \Delta \varphi)}{d \Delta \eta d \Delta \varphi}-\frac{1}{N^{(p)}} \frac{d^{2} N^{(p p)}(\Delta \eta, \Delta \varphi)}{d \Delta \eta d \Delta \varphi}+\frac{1}{N^{(n)}} \frac{d^{2} N^{(n p)}(\Delta \eta, \Delta \varphi)}{d \Delta \eta d \Delta \varphi}-\frac{1}{N^{(n)}} \frac{d^{2} N^{(n n)}(\Delta \eta, \Delta \varphi)}{d \Delta \eta d \Delta \varphi}\right\}$
Here $N(p)$ is number of positively charged hadrons, $d^{2} N^{(p n)} / d \Delta \eta d \Delta \varphi-$ relative rapidity and azimuthal distribution of positive-negative pairs of hadrons.

Event A

$$
\begin{aligned}
& \frac{1}{N^{(p)}} \frac{d^{2} N_{\text {same }}^{(p n)}(\Delta \eta, \Delta \varphi)}{d \Delta \eta d \Delta \varphi} \\
& \frac{1}{N^{(p)}} \frac{d^{2} N_{\text {mixed }}^{(p n)}(\Delta \eta, \Delta \varphi)}{d \Delta \eta d \Delta \varphi}
\end{aligned}
$$

To account for abundance of positive electrical charge (from protons) distributions are to be corrected for charge imbalance at the NICA energies according to the formula bellow:

$$
\frac{1}{N^{(p)}} \frac{d^{2} N_{\text {data }}^{(p n)}(\Delta \eta, \Delta \varphi)}{d \Delta \eta d \Delta \varphi}=\frac{1}{N^{(p)}} \frac{d^{2} N_{\text {same }}^{(p n)}(\Delta \eta, \Delta \varphi)}{d \Delta \eta d \Delta \varphi}-\frac{1}{N^{(p)}} \frac{d^{2} N_{\text {mixed }}^{(p n)}(\Delta \eta, \Delta \varphi)}{d \Delta \eta d \Delta \varphi}
$$

Experimental status of CBFs at LHC (ALICE)

An extensive experimental analysis of CBFs was performed at LHC by ALICE collaboration [Phys.Lett.B 723, 267-279 (2013); Phys.Rev.C 100, 044903 (2019); Eur.Phys.J.C 76, 86 (2016); Nucl.Phys.A 982, 315-318 (2019)].

$\Delta \eta$

$\Delta \eta$

CBFs as a function of $\Delta \eta$ for different centrality classes: 0-5\%, 30-40\%, and 70-80\% (on the left). CBFs for charged particles as a function of $\Delta \eta$ (upper row) and $\Delta \varphi$ (lower row) in different multiplicity classes (on the right).

Experimental status of CBFs at LHC (ALICE)

One can notice that modern models of heavy-ion collisions struggle to reproduce experimental data on CBF widths at both LHC and RHIC BES (see next slides) energies, thus actualizing the area of research and initiating a new series of investigations.

Centrality dependence of the width of the CBF $\langle\Delta \eta\rangle$ and $\langle\Delta \varphi\rangle$, for the correlations studied in terms of the relative pseudorapidity and the relative azimuthal angle, respectively (on the left). The multiplicity-class dependence of $<\Delta \eta>\operatorname{in~} \mathrm{PbPb}$, pPb , and pp collisions at $\sqrt{ } \mathrm{s}_{\mathrm{NN}}=\mathbf{=}$ $2.76,5.02$, and 7 TeV compared with results from various event generators (in central and right plots).

Experimental status of CBFs at RHIC BES energies

Meanwhile, only inclusive rapidity CBFs were measured at RHIC BES energies. Azimuthal and partial ($\pi^{ \pm} \pi^{ \pm}, \mathrm{K}^{ \pm} \mathrm{K}^{ \pm}, \ldots$) CBFs are still to be measured in order to provide better insight on charge generation mechanisms and consequent correlations of charged particles.

$\mathrm{B}(\Delta \varphi)=$?

Rapidity CBFs of all charged particles with $0.2<\mathrm{p}_{\mathrm{T}}<2 \mathrm{GeV} / \mathrm{c}$ in central Au+Au collisions (0-5\%) at V_{SN} from 7.7 to 200 GeV . Mixed CFBs are constructed from mixed events, shuffled CBFs are constructed from tracks with shuffled charges within single event [Phys.Rev.C 94 (2), 024909 (2016)].

Experimental status of CBFs at RHIC BES energies

There are two experimental observations worth noticing:
\checkmark CBF width increases with the increase of the centrality of heavy-ion collisions;
\checkmark CBF width decreases while the energy of the beam increases.

Energy dependence of CBF widths compared with the widths of CBFs calculated using events with shuffled charges (on the left). CBF widths for the most central events (0-5\%) compared with CBF widths calculated using events with shuffled charges (on the right) [Phys.Rev.C 94 (2), 024909 (2016)].

Utilized models

- HYDJET++ is a Monte-Carlo event generator written in C++ and Fortran for study of various hadron characteristics in relativistic heavy-ion collisions [Comp.Phys.Com. 180, 779 (2009)]. The final state of the reaction in HYDJET++ is presented as a superposition of two independent components: thermal hadronic state (soft), and multipartonic jet state (hard).
- UrQMD is a microscopic transport model [Prog.Part.Nucl.Phys. 41 (1998)] based on covariant propagation of hadrons. It includes stochastic binary scatterings, formation of color strings, and resonances decay.
- vHLLE is a (3+1) dimensional relativistic viscous hydrodynamic code based on the Godunov method and the relativistic HLLE (Harten, Lax, van Leer, Einfeldt) approximation for the solution of the Riemann problem for its inviscid part [Comput.Phys.Commun. 185, 3016-3027 (2014)]. Primary application of the code is simulations of the hydrodynamic expansion of QCD matter created in relativistic heavy-ion collisions.

CBF widths at $\sqrt{ } \mathrm{s}_{\mathrm{NN}}=11.5 \mathrm{GeV}$ (MC generator level)

\rightarrow MPD UrQMD results are close to those of STAR UrQMD;
\rightarrow UrQMD describes experimental data in peripheral collisions; vHLLE, HYDJET++ - in central collisions;
\rightarrow None of the models describes experimental data completely;
\rightarrow No dependence on EoS was spotted in vHLLE model;
\rightarrow Unaccounted charge correlation mechanisms?

Utilized dataset

Request № 25 events were used in this analysis (50 million events):
leos/nica/mpd/sim/data/exp/dst-BiBi-09.2GeV-mp07-22-500ev-req25/BiBi/09.2GeV-mb/urqmd/BiBi-09.2GeV-mp07-22-500ev-req25
Following cuts were applied: Default PID was used (for example, for pions): $\left|\mathrm{v}_{\mathrm{z}}\right|<30 \mathrm{~cm}, \mathrm{v}_{\mathrm{xy}}<2 \mathrm{~cm} \quad \operatorname{Prob}\left(\pi^{ \pm}\right)>\operatorname{Prob}\left(\mathrm{K}^{ \pm}\right)>\operatorname{Prob}(\mathrm{pp})$ $\mathrm{N}_{\text {hits }} \geq 15$, DCA $<3 \mathrm{~cm}$
$\operatorname{Prob}\left(\pi^{ \pm}\right)>0.99$
Default PID purity \& contamination estimations

UrQMD rapidity CBF at $\sqrt{ } \mathrm{s}_{\mathrm{NN}}=9.2 \mathrm{GeV}$ (MC generator vs. reconstruction)

Generator and reconstruction level CBFs at $\sqrt{ } \mathrm{S}_{\text {NN }}=9.2 \mathrm{GeV}$ in UrQMD model. Black dots - corrected CBFs, red squares - raw (uncorrected) CBFs, blue diamonds - mixed CBFs.
MC level CBF in the left figure, reconstruction level CBF in the right figure. Overall, CBF is well reconstructed; however, its amplitude is decreased. Notably, there are CBF shape distortions, rather small however, that they do not impact reconstructed CBF widths significantly.

UrQMD azimuthal CBF at $\sqrt{ } \mathrm{s}_{\mathrm{NN}}=9.2 \mathrm{GeV}$ (MC generator vs. reconstruction)

Generator and reconstruction level CBFs at $\sqrt{ } \mathrm{S}_{\text {NN }}=9.2 \mathrm{GeV}$ in UrQMD model. Black dots - corrected CBFs, red squares - raw (uncorrected) CBFs, blue diamonds - mixed CBFs.
MC level CBF in the left figure, reconstruction level CBF in the right figure. Overall, CBF is well reconstructed; however, its amplitude is decreased. Notably, there are CBF shape distortions, rather small however, that they do not impact reconstructed CBF widths significantly.

UrQMD CBFs at $\sqrt{\mathrm{S}_{\mathrm{NN}}}=9.2 \mathrm{GeV}$ (MC generator vs. reconstruction)

Generator and reconstruction level CBFs at $\sqrt{ } \mathbf{S}_{\text {мา }}=9.2 \mathrm{GeV}$ in UrQMD model. Black dots - reconstructed CBFs, red squares - generator level CBFs.
MC generator level and reconstructed CBFs compared. Overall, CBFs are well reconstructed; however, their amplitudes are decreased. Notably, there are CBF shape distortions, rather small however, that they do not impact reconstructed CBF widths significantly.

CBF widths reconstruction at $\sqrt{ } \mathrm{S}_{\mathrm{NN}} \equiv 9.2 \mathrm{GeV}$ (inclusive CBFs: $\pi^{ \pm}+K^{ \pm}+p \bar{p}$)

Generator and reconstruction level CBF widths at $\sqrt{ } \mathrm{s}_{\mathrm{NN}}=9.2 \mathrm{GeV}$ in UrQMD model. Black dots - reconstructed CBFs, red squares - generator level CBFs.
MC generator and reconstruction level CBF widths are fairly reconstructed. Reconstructed rapidity and azimuthal widths are within 3% and 5% correspondingly.

CBF widths reconstruction at $\sqrt{ } \mathrm{S}_{\mathrm{NN}}=9.2 \mathrm{GeV}$ (partial CBFs: $\pi^{ \pm} \pi^{ \pm}$pairs)

Generator and reconstruction level CBF widths at $\sqrt{ } \mathrm{s}_{\mathrm{NN}}=9.2 \mathrm{GeV}$ in UrQMD model. Black dots - reconstructed CBFs, red squares - generator level CBFs.
MC generator and reconstruction level CBF widths are fairly reconstructed. Reconstructed rapidity and azimuthal widths are within 8% and 10% correspondingly.

CBF widths reconstruction at $\sqrt{S_{N N}}=9.2 \mathrm{GeV}$ (partial CBFs: $K^{ \pm} K^{ \pm}$pairs)

Generator and reconstruction level CBF widths at $\sqrt{ } \mathrm{S}_{\mathrm{NN}}=9.2 \mathrm{GeV}$ in UrQMD model. Black dots - reconstructed CBFs, red squares - generator level CBFs.
MC generator and reconstruction level CBF widths are fairly reconstructed. Reconstructed rapidity and azimuthal widths are within 15% and 10% correspondingly.

Summary \& outlook

\checkmark CBFs and their widths were calculated on Request № 25 data. MC generator and reconstruction level results were compared.
\checkmark Inclusive rapidity and azimuthal CBF widths are within 3% and 5% of MC generator widths correspondingly.
$\boldsymbol{\sim}$ Overall, CBF widths are fairly reconstructed even with default PID: purity improvement might yield better partial CBF width reconstruction.
\checkmark Further analysis of CBFs with different models is planned in the future.

Supplementary slides

CBF widths reconstruction at $\sqrt{ } \mathrm{S}_{\mathrm{NN}}=9.2 \mathrm{GeV}$ (non-diagonal partial CBFs: $\pi^{ \pm} \mathrm{K}^{ \pm} \& \mathrm{~K}^{ \pm} \pi^{ \pm}$pairs)

Track splitting during reconstruction

Track splitting caused dips in CBF due to incorrect reading procedure. In future: separate reading of MC and rec. data if no DIRECT comparison is intended (MC tracks are selected by their IDs in reconstructed tracks).

Processing event 7/19140
TRACK 1 index MC 6645
Track 0, mother : 922, Type -321, momentum ($0.310328,0.0295539,0.219516$) GeV
STS 0, TPC 2, TOF 4, ETOF 0, FFD 0, ECT 0, ECAL 64, NDET 0, CPC 0, BBC 0, ZDC 0, FSA 0 Mass: 0.493677
Energy: 0.623764
TRACK 2 index MC 6645 index REC 412
Track 0, mother : 922, Type -321, momentum ($0.310328,0.0295539,0.219516$) GeV
STS 0, TPC 2, TOF 4, ETOF 0, FFD 0, ECT 0, ECAL 64, NDET 0, CPC 0, BBC 0, ZDC 0, FSA 0
Mass: 0.493677
Energy: 0.623764

TRACK 1 index MC 8026 index REC 106
Track 0, mother : 714, Type -211, momentum ($0.161771,0.385275,0.312627$) GeV
STS 0, TPC 2, TOF 4, ETOF 0, FFD 0, ECT 0, ECAL 64, NDET 0, CPC 0, BBC 0, ZDC 0, FSA 0

Mass: 0.13957

Energy: 0.540205
TRACK 2 index MC 8026 index REC 337
Track 0, mother : 714, Type -211, momentum ($0.161771,0.385275,0.312627$) GeV
STS 0, TPC 2, TOF 4, ETOF 0, FFD 0, ECT 0, ECAL 64, NDET 0, CPC 0, BBC 0, ZDC 0, FSA 0 Mass: 0.13957 Energy: 0.540205

TRACK 1 index MC 1356 index REC 111

Track 0, mother : -1, Type 211, momentum ($-0.227688,0.163272,-0.0967013$) GeV
STS 0, TPC 2, TOF 4, ETOF 0, FFD 0, ECT 0, ECAL 64, NDET 0, CPC 0, BBC 0, ZDC 0, FSA 0
Mass: 0.13957
Energy: 0.327614
TRACK 2 index MC 1356 index REC 360
Track 0, mother : -1, Type 211, momentum ($-0.227688,0.163272,-0.0967013$) GeV
STS 0, TPC 2, TOF 4, ETOF 0, FFD 0, ECT 0, ECAL 64, NDET 0, CPC 0, BBC 0, ZDC 0, FSA 0 Mass: 0.13957
Energy: 0.327614

Centrality \& multiplicity distributions (MC level)

Centrality and multiplicity distributions of MC events seem normal.

Multiplicity-distributions (MC.Ievel, $\pi+K+p$)

It seems there are events with incomplete multiplicities that are merged with complete multiplicity events in peripheral collisions.

Multiplicity-distributions (rec ${ }_{w}$ level, $\pi+K+p$)

No incomplete multiplicity events are visible at reconstruction level, though multiplicity is decreased compared to MC due to additional track cuts.

Rapidity \& transverse momentum distributions
 (MC level, 0-5\% centrality)
 eta_00_05_

Rapidity and momentum distributions of MC events seem normal.

Accuracy of η and φ reconstruction

$\delta \eta=\eta_{\text {reccaial }} / \eta_{m c}-1$

φ reconstruction accuracy of $\pi^{ \pm}$and $\mathrm{K}^{ \pm}$

Seem to be fairly reconstructed.

