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Motivation for the analysis

The law of charge conservation establishes strong correlations between charged particles
and their momenta. To study these correlations, among other observables, the Charge
Balance Function (CBF) is proposed. The function is sensitive to the time the
correlation was established and thus provides information on hadronization time
point. In hydrodynamic approach the CBF width is proportional to the inverse strength of
the collective flow in the system allowing to estimate collective effects as well. All that
raises a question whether the CBF is dependent on the phase transition type
providing great opportunity for the Monte-Carlo study within the MPD.



General formalism of Charge Balance Functions

Charge is locally conserved in heavy-ion collisions. Correlations between balancing charges (electric charge,
baryon number, and strangeness) can be studied by measuring charge balance functions. They represent the

probability, given the observation of a charge q, of seeing its balancing charge -q at some relative rapidity
Ay and relative azimuthal angle Ag.

One of the definitions of the charge balance function [Phys.Rev.C 104, 014906 (2021)] is given bellow
P_—P P _—P
pn pp np nn
B(Ay ACO fd)’1d§01d)’2d¢25(Y1_Y2_AY)5(§01_§02_A§0) p + p )
p n
ppn 3 ppn( Y1,®15 Vo, %) represents the conditional probability density for observing a negative

= charge at (y., @.), given a positive charge at (y., ¢.) is observed. Other
P, P,(y., ) members are defined similarly.

Charge balance function can be characterized by its width defined as follows

ZiBiAni : Z BAg

An= — rapidity width Ap)= — azimuthal width
(An) S5 (Ap)= S5,

Charge balance function widths provide information on charge separation time. For instance, long range

correlations (wide distribution) display early charge separation, and vice versa late charge separation
leads to a narrower distribution, i.e. short range correlations.
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Experimental intricacies of CBF calculation
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Here N(p) is number of positively charged hadrons, d?N®"/dAndA@p — relative rapidity and azimuthal
distribution of positive-negative pairs of hadrons.
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To account for abundance of positive electrical charge (from protons) distributions are to be
corrected for charge imbalance at the NICA energies according to the formula bellow:

1 d Ndata<A77’Aq0> 1 d Nsame(ATLAgp)_ 1 d ]\Imvced(A ﬂ,ACP)
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Experimental status of CBFs at LHC (ALICE)

An extensive experimental analysis of CBFs was performed at LHC by ALICE collaboration [Phys.Lett.B 723, 267-279
(2013); Phys.Rev.C 100, 044903 (2019); Eur. Phys J.C 76, 86 (2016); Nucl.Phys.A 982, 315-318 (2019)].
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Experimental status of CBFs at LHC (ALICE)

One can notice that modern models of heavy-ion collisions struggle to reproduce experimental data on CBF widths at both
LHC and RHIC BES (see next slides) energies, thus actualizing the area of research and initiating a new series of investigations.
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Experimental status of CBFs at RHIC BES energies

Meanwhile, only inclusive rapidity CBFs were measured at RHIC BES energies. Azimuthal and
partial (r*mt*, K*K*, ...) CBFs are still to be measured in order to provide better insight on charge
generation mechanisms and consequent correlations of charged particles.
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Rapidity CBFs of all charged particles with 0.2 < pr < 2 GeV/c in central Au+Au collisions (0-5%) at Vs
from 7.7 to 200 GeV. Mixed CFBs are constructed from mixed events, shuffled CBFs are constructed from
tracks with shuffled charges within single event [Phys.Rev.C 94 (2), 024909 (2016)]. 7



Experimental status of CBFs at RHIC BES energies

There are two experimental observations worth noticing:
v CBF width increases with the increase of the centrality of heavy-ion collisions;
v CBF width decreases while the energy of the beam increases.
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using events with shuffled charges (on the right) [Phys.Rev.C 94 (2), 024909 (2016)].
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Utilized models

e HYDJET++ is a Monte-Carlo event generator written in C++ and Fortran for study of
various hadron characteristics in relativistic heavy-ion collisions [Comp.Phys.Com. 180,
779 (2009)]. The final state of the reaction in HYDJET++ is presented as a
superposition of two independent components: thermal hadronic state (soft), and
multipartonic jet state (hard).

® UrQMD is a microscopic transport model [Prog.Part.Nucl.Phys. 41 (1998)] based on
covariant propagation of hadrons. It includes stochastic binary scatterings, formation
of color strings, and resonances decay.

e vHLLE is a (3+1) dimensional relativistic viscous hydrodynamic code based on the
Godunov method and the relativistic HLLE (Harten, Lax, van Leer, Einfeldt) approximation
for the solution of the Riemann problem for its inviscid part [Comput.Phys.Commun. 185,
3016-3027 (2014)]. Primary application of the code is simulations of the
hydrodynamic expansion of QCD matter created in relativistic heavy-ion collisions.



CBF widths at Vs
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2> MPD UrQMD results are close to those of STAR UrQMD;
2>UrQMD describes experimental data in peripheral collisions;

VHLLE, HYDJET++ — in central collisions;
2>None of the models describes experimental data completely;

2 No dependence on EoS was spotted in VHLLE model;

2Unaccounted charge correlation mechanisms?



Utilized dataset

Request Ne 25 events were used in this analysis (50 million events):
leosInicalmpd/sim/data/exp/dst-BiBi-09.2GeV-mp07-22-500ev-req25/BiBi/09.2GeV-mb/urqgmd/BiBi-09.2GeV-mp07-22-500ev-req25

Following cuts were applied: Default PID was used (for example, for pions):
V] <30 cm, v,y <2 cm Prob(1t*) > Prob(K*) > Prob(pp)
Nhits 2 15, DCA <3 cm Prob(1t*) > 0.99

Default PID purity & contamination estimations
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UrQMD rapidity CBF at Vsyy = 9.2 GeV
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Generator and reconstruction level CBFs at Vsyw = 9.2 GeV in UrQMD model. Black dots — corrected CBFs, red
squares — raw (uncorrected) CBFs, blue diamonds — mixed CBFs.
MC level CBF in the left figure, reconstruction level CBF in the right figure. Overall, CBF is well
reconstructed; however, its amplitude is decreased. Notably, there are CBF shape distortions,

rather small however, that they do not impact reconstructed CBF widths significantly.
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UrQMD azimuthal CBF at Vsyn = 9.2 GeV
(MC generator vs. reconstruction)
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Generator and reconstruction level CBFs at Vsyn = 9.2 GeV in UrQMD model. Black dots — corrected CBFs, red
squares — raw (uncorrected) CBFs, blue diamonds — mixed CBFs.

MC level CBF in the left figure, reconstruction level CBF in the right figure. Overall, CBF is well
reconstructed; however, its amplitude is decreased. Notably, there are CBF shape distortions,
rather small however, that they do not impact reconstructed CBF widths significantly. 13



UrQMD CBFs at Vsyy = 9.2 GeV
(MC generator vs. reconstruction)

 Bi+Bi |sy, =9.2GeV 0-5% —&— MPD UrQMD rec. [ Bi+Bi |5y =9.2GeV 0-5% —&— MPD UrQMD rec.
08l 0-2<p,<2(GeVic) | <1 —=— MPD UrQMD MC 08l 0-2<p, <2 (GeVic) | <1 —=— MPD UrQMD MC
0.6 0.6
04 g _ 0.4
c — —- = -
< - — g L
@ -~ - . N
0.2— - .o~ - 0.23_.
- P Sy P —- Sl Shals on SEoas sr TECERE
N —0--0—_.__._'—-_._ T e g g 000 ++H+'f=:=m
o R S gp STV o e
_0_2__ lv,| <30 cm Viy < 2cm _0_2__ lv,| <30 cm Vy < 2cm
- NprS >15 DCA<3cm - NprS >15 DCA <3 cm
_O 4| 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | | | 1 1 | _O 4 1 | 1 1 | 1 1 | 1 1 | 1 1 | 1 | 1 1 1 1 1 1 1 I 1 1 1 1 1 | 1
"0 0.5 1 1.5 2 "0 /4 /2 3m/4 n

AN Ao
Generator and reconstruction level CBFs at Vsyy = 9.2 GeV in UrQMD model. Black dots — reconstructed CBFs, red
squares — generator level CBFs.
MC generator level and reconstructed CBFs compared. Overall, CBFs are well reconstructed;
however, their amplitudes are decreased. Notably, there are CBF shape distortions, rather small
however, that they do not impact reconstructed CBF widths significantly. 14
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CBF widths reconstruction at Vsyy = 9.2 GeV
(inclusive CBFs: 1T* + K* + pp)
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CBFs, red squares — generator level CBFs.

MC generator and reconstruction level CBF widths are fairly reconstructed. Reconstructed
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rapidity and azimuthal widths are within 3% and 5% correspondingly.
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CBF widths reconstruction at Vsyy = 9.2 GeV
(partial CBFs: 1t*1T* pairs)
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Generator and reconstruction level CBF widths at Vsnw = 9.2 GeV in UrQMD model. Black dots — reconstructed
CBFs, red squares — generator level CBFs.
MC generator and reconstruction level CBF widths are fairly reconstructed. Reconstructed
rapidity and azimuthal widths are within 8% and 10% correspondingly.
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<Amn>

CBF widths reconstruction at Vsyy = 9.2 GeV
(partial CBFs: K*K* pairs)
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Generator and reconstruction level CBF widths at Vsnw = 9.2 GeV in UrQMD model. Black dots — reconstructed
CBFs, red squares — generator level CBFs.
MC generator and reconstruction level CBF widths are fairly reconstructed. Reconstructed
rapidity and azimuthal widths are within 15% and 10% correspondingly.
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Summary & outlook

v CBFs and their widths were calculated on Request Ne 25 data. MC generator
and reconstruction level results were compared.

v Inclusive rapidity and azimuthal CBF widths are within 3% and 5% of MC
generator widths correspondingly.

v Overall, CBF widths are fairly reconstructed even with default PID: purity
improvement might yield better partial CBF width reconstruction.

v Further analysis of CBFs with different models is planned in the future.
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CBF widths reconstruction at Vsyy = 9.2 GeV
(non-diagonal partial CB
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Track splitting during reconstruction

Track splitting caused dips in CBF due to incorrect reading procedure. In future: separate reading of
MC and rec. data if no DIRECT comparison is intended (MC tracks are selected by their IDs in

reconstructed tracks).

Processing event 7/19140
TRACK 1 index MC 6645 index REC 5
Track 0, mother : 922, Type -321, momentum (0.310328, 0.0295539, 0.219516) GeV
STS 0, TPC 2, TOF 4, ETOF 0, FFD 0, ECT 0, ECAL 64, NDET 0, CPC 0, BBC 0, ZDC 0, FSA 0
Mass: 0.493677
Energy: 0.623764
TRACK 2 index MC 6645 index REC 412
Track 0, mother : 922, Type -321, momentum (0.310328, 0.0295539, 0.219516) GeV
STS 0, TPC 2, TOF 4, ETOF 0, FFD 0, ECT 0, ECAL 64, NDET 0, CPC 0, BBC 0, ZDC 0, FSA 0
Mass: 0.493677
Energy: 0.623764

TRACK 1 index MC 8026 index REC 106
Track 0, mother : 714, Type -211, momentum (0.161771, 0.385275, 0.312627) GeV
STS 0, TPC 2, TOF 4, ETOF 0, FFD 0, ECT 0, ECAL 64, NDET 0, CPC 0, BBC 0, ZDC 0, FSA 0
Mass: 0.13957
Energy: 0.540205
TRACK 2 index MC 8026 index REC 337
Track 0, mother : 714, Type -211, momentum (0.161771, 0.385275, 0.312627) GeV
STS 0, TPC 2, TOF 4, ETOF O, FFD 0, ECT 0, ECAL 64, NDET 0, CPC 0, BBC 0, ZDC 0, FSA 0
Mass: 0.13957
Energy: 0.540205

TRACK 1 index MC 1356 index REC 111
Track 0, mother : -1, Type 211, momentum (-0.227688, 0.163272, -0.0967013) GeV
STS 0, TPC 2, TOF 4, ETOF O, FFD 0, ECT 0, ECAL 64, NDET 0, CPC 0, BBC 0, ZDC 0, FSA 0
Mass: 0.13957
Energy: 0.327614
TRACK 2 index MC 1356 index REC 360
Track 0, mother : -1, Type 211, momentum (-0.227688, 0.163272, -0.0967013) GeV
STS 0, TPC 2, TOF 4, ETOF 0, FFD 0, ECT 0, ECAL 64, NDET 0, CPC 0, BBC 0, ZDC 0, FSA 0
Mass: 0.13957
Energy: 0.327614
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Centrality & multiplicity distributions (MC level)
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Centrality and multiplicity distributions of MC events seem normal.
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Multlpl|C|twdo|ostr|hu1u)ns (MC.level, TT+K+p)
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It seems there are events with incomplete multiplicities that are
merged with complete multiplicity events in peripheral collisions.



Multiplicity-distributions (rec.level, TT+K+p)

multc_00_05_ multc_10_20_

Entries 92683 Entries 185170

0 Mean 3746 Mean 246.7
E 0_ 5 % StdDev  30.04 10 1 0_20% StdDev 325
10°
E 10° E
1 B
10 ; 102 =
10 10 =
1 1
R I ST SIS SN I (PR ST E S A | ST I SPENI PSPPSR S A
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000
IUIG_OU_4U_ 1UIG_DU_0U__
Entries 185882 Entries 183791
Mean 126.2 Mean 57.63
10¢ StdDev  23.05 StdDev  15.85

30-40% ol 50-60%

10°

|vz| <30cm Vy < 2cm
NP >15 DCA<3cm

hits —

10

0200300600 5001000 1200 1400 600 1800 3000 0500200600 5001000 1200 1400 1600 1800 3000
No incomplete multiplicity events are visible at reconstruction level, though
multiplicity is decreased compared to MC due to additional track cuts.
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Rapidity & transverse momentum distributions

(MC level, 0-5% centrality)
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Rapidity and momentum distributions of MC events seem normal.
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Accuracy of n and @ reconstruction
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Seem to be fairly reconstructed.
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(@ reconstruction accuracy of 1t* and K*
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Seem to be fairly reconstructed.
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