

Dzhelepov Laboratory of Nuclear Problems

Experimental search for double beta decay of Zr-96 to excited states of Mo-96

Khussainov Temirlan JINR DLNP, NRNU MEPHI

AYSS-2023 Dubna 01.11.23

Dzhelepov Laboratory of Nuclear Problems

Joint Institute for Nuclear Research

Different beta decay schemes

Energy conditions for double beta decay

• Probability can be expressed as the product of the kinematic and nuclear parts:

$$\Gamma^{2\nu} = \frac{1}{T_{\frac{1}{2}}^{2\nu}} = G^{2\nu} Q_{\beta\beta}, Z \left| M^{2\nu} \right|^{2}$$

• The probability of a neutrinoless mode, which is forbidden in the SM, can be expressed in a similar form:

$$\Gamma^{0\nu} = \frac{1}{T_{\frac{1}{2}}^{0\nu}} = G^{0\nu} \quad Q_{\beta\beta}, Z \quad \left| M^{0\nu} \right|^2 \left\langle \eta \right\rangle^2$$

there: G^{2v} and G^{0v} phase spaces for standard and neutrinoless modes, proportional to the decay energy and charge number of the decaying isotope

 $M^{2\nu} \text{and}\ M^{0\nu} - \text{matrix elements}$

 $\langle \eta \rangle$ – parameter characterizing the effective mass of neutrinos

Experiment

Dzhelepov Laboratory of Nuclear Problems

1. Thibaud Le Noblet – Latest results from NEMO-3 and commissioning status of the SuperNEMO demonstrator – TAUP 2017.

2. S. W. Finch and W. Tornow – Search for two-neutrino double-β decay of 96Zr to excited states of 96Mo – PHYSICAL REVIEW C 92, 045501 (2015)

- Zirconium sample that has enough mass (activity) for decay registration
- Absence of radioactive contamination of the test sample
- Low background experimental setup
- A detector with high efficiency and good energy resolution

Experimental setup

Dzhelepov Laboratory of Nuclear Problems

Joint Institute for Nuclear Research

Detectors and passive shielding

Active shielding

Sample container's scheme

- A zirconium sample with a mass of 203.182 g and ⁹⁶Zr isotope enrichment 88.18% (natural enrichment 2.81%), supplied by JSC Electrochemical Plant
- High resolution HPGe detectors are used (FWHM=2.9 keV in ROI)
- Members of the collaboration:

JINR DLNP INR BNO Kurchatov Institute ITEP

Setup scheme in Geant4

10⁶ events

With the following input data:

- Pessimistic estimate of expected half-life of 10²¹ years
- Zirconium with a mass 203.182 g
- ⁹⁶Zr enrichment 88.18 % (isotope mass 179.166 g)

Expectations:

- 2.14 decays per day
- Counts in 370 keV peak 0.102 per day
- Counts in 778 keV peak 0.068 per day

Current results

100

200

300

400

500

600

700

800 keV

<u> -</u> 10²

10

100

Dzhelepov Laboratory of Nuclear Problems

Det54755_Red_Sample {t-tmuon>100e-6 && t-t_inh55[0]>0.0042}

500

600

Half-life limit set after 10 days measurements in DLNP:

300

 $T_1(0_1^+) > 1.19 \cdot 10^{18} \text{ yr}$ $\overline{2}$

200

800

keV

- Measurements of ²³⁸U distributed calibration source for comparison with Monte Carlo
- Setting limits on the thorium content in the sample
- Measurements of zirconium sample in underground laboratory of BNO

Background level in DLNP: 4.94 counts per day in 370 keV peak

2.21 counts per day in 778 keV peak

Background level in BNO: ~1 count per 50 days

- Experiment is dedicated for the first detection of ⁹⁶Zr double beta decay to excited states of ⁹⁶Mo
- It will provide an opportunity to improve the determination of matrix elements of 2β decay
- The obtained results will contribute to expanding of our understanding of the nature of neutrinos

Dzhelepov Laboratory of Nuclear Problems

Joint Institute for Nuclear Research

Thank you for attention!

Backup

Dzhelepov Laboratory of Nuclear Problems

Joint Institute for Nuclear Research

Probabilities of different ⁹⁶Zr decay modes

Dzhelepov Laboratory of Nuclear Problems

Joint Institute for Nuclear Research

Top view of setup geometry in Geant4

Backup

Dzhelepov Laboratory of Nuclear Problems

Joint Institute for Nuclear Research

16