

Muon capture measurements with ¹³⁶Ba target.

M.V. Fomina for the MONUMENT collaboration

The XXVII International Scientific Conference of Young Scientists and Specialists (AYSS-2023) **30 October - 3 November 2023, Dubna**

Overview

➢Ordinary muon capture (OMC)

- Motivation (OMC&DBD)
- Fundamental concept
- >MONUMENT experiment
- ➤Experimental setup
- Measurement principle
- >Observables. Total capture rate and partial rate

➤Conclusions.

Ordinary muon capture (OMC). Motivation. 0vββ.

Ordinary muon capture (OMC). Motivation. 0vββ.

$0\nu\beta\beta$ -decay candidate	Experiments	OMC target	Status	
⁷⁶ Ge	Gerda I/II, Majorana Demonstrator, LEGEND	⁷⁶ Se	2004, 2021	
⁴⁸ Ca	TGV, NEMO3, Candles III	⁴⁸ Ti	2002, 2023	
¹⁰⁶ Cd	TGV	¹⁰⁶ Cd	2004	
⁸² Se	NEMO3, SuperNEMO, Lucifer (R&D)	⁸² Kr	2019	
¹⁰⁰ Mo	NEMO3, AMoRE(R&D), LUMINEU (R&D), CUPID-0 Mo	¹⁰⁰ Ru	—	
¹¹⁶ Cd	NEMO3, Cobra	¹¹⁶ Sn	_	
¹⁵⁰ Nd	SuperNEMO, DCBA (R&D)	¹⁵⁰ Sm	2006	
¹³⁶ Xe	nEXO, KamLAND2-Zen, NEXT, DARWIN, PandaX-III	¹³⁶ Ba	2021	
¹³⁰ Te	Cuore 0/Cuore, SNO+	¹³⁰ Xe	2019	

Ordinary muon capture (OMC) with¹³⁶Ba target. Fundamental concepts.

Technical University of Munich

D. Bajpai¹, L. Baudis², V.V. Belov³, E. Bossio⁴, T.E. Cocolios⁵, H. Ejiri⁶, M.V. Fomina³, I.H. Hashim⁷, M. Heines⁵, K.N. Gusev^{3,4}, S.V. Kazartsev³, A. Knecht⁸, E. Mondragon⁴, Ng Zheng Wei⁷, I. Ostrovskiy¹, F. Othman⁷, G. Rodrigues Araujo², N.S. Rumyantseva³, S. Schönert⁴, M. Schwarz⁴, E.A. Shevchik³, M.V. Shirchenko³, Yu.A. Shitov^{3,9}, J. Suhonen¹⁰, E.O. Sushenok³, S.M. Vogiatzi^{8,11}, C. Wiesinger³, I.V. Zhitnikov³, D.R. Zinatulina³

- 1 The University of Alabama, Tuscaloosa, Alabama 35487, USA
- 2 University of Zurich, Rämistrasse 71, 8006 Zürich, Switzerland
- 3 Joint Institute for Nuclear Research, 6 Joliot-Curie st., 141980 Dubna, Moscow Region, Russia
- 4 Technical University of Munich, Boltzmannstrasse 15, 85748 Garching, Germany
- 5 Katholieke Universiteit Leuven, Oude Markt 13, 3000 Leuven, Belgium
- 6 Osaka University, 1-1 Yamadaoka, Suita, 565-0871 Osaka, Japan
- 7 Universiti Teknologi Malaysia, Jalan Iman, 81310 Johor Bahru, Johor, Malaysia
- 8 Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland

9 Institute of Experimental and Applied Physics, Czech Technical University in Prague, Husova 240/5, 110 00 Prague, Czech Republic

- 10 University of Jyväskylä, Seminaarinkatu 15, 40014 Jyväskylä, Finland
- 11 Swiss Federal Institute of Technology in Zürich, Rämistrasse 101, 8092 Zürich, Switzerland

UNIVERSITY OF JYVÄSKYLÄ

Experimental setup

PAUL SCHERRER INSTITUT

- □ Aluminum frame with the HPGe detectors mounted at a distance of about 12 cm from the target system
- **8 HPGe detectors**:
 - Four large-volume n-type Reverse Electrode coaxial Ge detectors (REGe detectors) with thin beryllium entrance windows (3 — PSI, 1 — TUM)
 - One large-volume p-type coaxial detector (COAX detector) with an electro-cooling unit (JINR)
 - Three relatively large-volume p-type Broad Energy BEGe detectors (2 — PSI, 1 — TUM)

Experimental setup. Muon trigger system

The muon trigger system combined with the target unit consists of:

- an active muon veto counter CO (1 cm thickness), placed at the entrance of the target enclosure;
- two thin (0.5 mm) pass-through counters C1 and C2;
- the actual target volume surrounded by a cup-like counter C3.

The four muon counters are defining μ -stop trigger

$$\mu_{\text{stop}} = \overline{\text{C0}} \land \text{C1} \land \text{C2} \land \overline{\text{C3}}$$

Using this trigger condition, the beam momentum ($\approx 35 \text{ MeV/c}$) and its focus point are tuned to maximize intensities of muonic X-rays from a target and minimize background from surrounding materials. Under optimal conditions more than 95% of data sample corresponded to muons stopped in the target. Typical μ_{stop} rate during the measurement campaign was around $3 \times 10^4 \text{ s}^{-1}$.

Also, we developed software that allows to set the PMTs' high voltage, hardware thresholds and logic schemes, all remotely, without interrupting the beam or data acquisition runs.

Measurement principle. Total muon capture.

I. Identification of γ -lines

HPGe detector events are classified by their dependence on the software trigger:

Correlated spectra: HPGe events occurring within selected time window following the software trigger $(t_{\mu_{\text{stop}}} \in (0 \text{ ns}, 1000 \text{ ns}))$ Prompt spectrum: characteristic μX rays $(t_{\mu_{stop}} < 100 \text{ ns})$

Delayed spectrum: the nuclear γ radiation following muon capture (μ^- , xn) reactions ($t_{\mu_{\text{stop}}} > 100 \text{ ns}$)

Uncorrelated spectra: HPGe events occurring outside of the selected time window caused by any of the C counters ($t_{\mu_{stop}} > 1000 \text{ ns}$)

Note: As far as each μ stopped in a target is followed by characteristic μX rays, the intensity of each spectral line reflects the number of μ stopped in the corresponding isotope. Therefore, μX spectra could be applied to normalize any measurements to amount of muons.

II. Analyzing of the time evolution of the individual γ -lines

The main method for determining of muon lifetime is to define the exponential time evolution of delayed γ -lines of OMC products:

- The measured γ -ray line intensities are histogrammed in two dimensions: energy and delay time $t_{\mu_{\rm stop}}$
- Selection of an energy region with the identified γ -lines
- Fitting of the identified γ -lines
- Total muon capture rate Λ_{cap} is evaluated for each detector and each γ -line.
- Weighted average is then performed

Observables. Total capture rate of ¹³⁶Ba

Partial rates.

Ordinary muon capture studies for the matrix elements in $\beta\beta$ decay

D. Zinatulina,¹ V. Brudanin,¹ V. Egorov,^{1,2} C. Petitjean,³ M. Shirchenko,¹ J. Suhonen,⁴ and I. Yutlandov¹ ¹Joint Institute for Nuclear Research, 141980 Dubna, Russia ²State University "Dubna", 141980 Dubna, Russia ³Paul Scherrer Institute, 5232 Villigen, Switzerland ⁴Department of Physics, University of Jyväskylä, P.O. Box 35, FIN-40351 Jyväskylä, Finland

> As mentioned above. in Eq. (2) the muon disappearance rate λ_{tot} includes the capture rate λ_{cap} which in its turn consists of partial rates to the all states of the daughter nucleus, including its ground state (j = 0), excited bound states (j =1, 2, ...), as well as higher excited states decaying with nucleon emission(s):

$$\lambda_{\rm cap} = \lambda_{\rm cap}(0n) + \lambda_{\rm cap}(1n) + \lambda_{\rm cap}(2n) + \lambda_{\rm cap}(1p) + \cdots,$$
(4)

For the theoretical NME calculations it is important to know the partial capture rate λ_j or at least the relative intensity P_j of the μ capture to a particular daughter state j, i.e., a capture with no nucleon emission [the first term in Eq. (4)]. Defining the percentage of the muons captured to a particular state j with respect to the total number of muons stopped in

$^{136}_{55}Cs^* ightarrow {}^{136}_{55}Cs + \gamma \longrightarrow$								
$^{136}_{56}Ba$	0n	d, т	-1n	d, т	-2n	d , т	-3n	d, т
$-1p+1n\left(\mu C or eC\right)^2$	$^{136}_{55}Cs$	b", 13d	$^{135(m)}_{55}Cs$	IT 53m	$^{134(m)}_{55}Cs$	IT, 3h	$^{133}_{55}Cs$	st
$-2p + 2n (\mu C \text{ or } eC)$ (or p emission)	$^{136}_{54} Xe$	st	$^{135}_{54} Xe_{\rm (Cs^*)}$	IT, br., 15m-9h	$^{134}_{54}Xe$	st or IT,~ms	$^{133}_{54}Xe$	br, IT 2-5d

D. Zinatulina, V. Brudanin, V. Egorov, C. Petitjean, M. Shirchenko, J. Suhonen, and I. Yutlandov, Ordinary muon capture studies for the matrix elements in ββ decay, Phys. Rev. C 99, 024327 - 2019

Partial rates (135Cs)

E <mark>(level)</mark> (keV)	Jπ(level)	T1/2(level)	<mark>Ε(γ)</mark> (keV)	Ι(γ)	Final level	
0.0	7/2+	2.3×10 ⁺⁶ y 3 % β ⁻ = 100				
249.767 4	5/2+	0.28 ns <i>8</i>	249.770 4	100	0.0	7/2+
408.026 5			158.260 <i>4</i> 408.009 <i>8</i>	81 <i>3</i> 100 <i>3</i>	249.767 0.0	5/2+ 7/2+
608.153 <i>8</i>	5/2+		200.19 10 358.384 9 608.151 12	0.40 <i>16</i> 7.6 <i>3</i> 100 <i>3</i>	408.026 249.767 0.0	5/2+ 7/2+
786.838 <i>13</i>	11/2+		786.836 <i>13</i>	100	0.0	7/2+
981.396 <i>19</i>			373.13 <i>10</i> 573.36 <i>4</i> 731.634 <i>21</i>	28 5 8.7 <i>13</i> 100 5	608.153 408.026 249.767	5/2+ 5/2+
1062.385 <i>13</i>			454.2 2 654.296 23 812.635 22 1062.41 2	5.1 <i>10</i> 64 <i>3</i> 100 <i>3</i> 5.8 <i>12</i>	608.153 408.026 249.767 0.0	5/2+ 5/2+ 7/2+
1133?			1133?	100	0.0	7/2+
1192?			1192.2?	100	0.0	7/2+
1358?			1358?	100	0.0	7/2+
1632.9	19/2-	<mark>53 m 2</mark> % IT = 100	846.1	100	786.838	11/2+

Analyzing of the correlated spectra for calculation of partial rates

- Searching for possible excited levels of daughter nuclei
- Fitting the spectra lines (for populated levels) considering detectors efficiencies and deexcitation process branching
- Normalization to number of muons stops
- Calculation of partial rates λ_i

$$\begin{split} \lambda_{P_{1}} &= \frac{\prod_{\nu} / E_{\nu}}{(\prod_{ks} / E_{ks} + \prod_{ks} / E_{ks})} \cdot (4 - \mathcal{T} H \mathbf{L}_{free}) \\ A &= 4 - \mathcal{T} H L (const) (\mathcal{T} - Uwps) \\ \Delta A &= \sqrt{(\Delta \mathcal{T} H L)^{2} + (\mathcal{T} A H L)^{2} + (\mathcal{T} H \Delta L)^{2}} const \\ C &= \frac{\prod_{k}}{E_{k}} + \frac{\prod_{ks}}{E_{ks}} (2 come monthematic k - arpoin) \\ \Delta C &= \sqrt{\left(\frac{\Delta T_{k}}{E_{k}}\right)^{2} + \left(\frac{T_{k}}{E_{k}} \Delta \frac{E_{k}}{E_{k}}\right)^{2} + \left(\frac{s \prod_{k}}{E_{ks}}\right)^{2} + \left(\frac{T_{k} a E_{ks}}{E_{ks}}\right)^{2}} (const) \\ B &= \frac{\prod_{\nu}}{E_{\nu}} \\ \Delta B &= \sqrt{\left(\frac{\Delta T_{\mu}}{E_{\mu}}\right)^{2} + \left(\frac{T_{\mu} \Delta E_{\mu}}{E_{\mu}}\right)^{2}} \\ \lambda_{P} &= \frac{B}{A \cdot C} \\ \Delta \lambda &= \sqrt{\left(\frac{\Delta B_{\nu}}{A C}\right)^{2} + \left(\frac{B \Delta A}{A^{2} C}\right)^{2} + \left(\frac{B \Delta C}{A C^{2}}\right)^{2}} \end{split}$$

Partial rates. The work is ongoing...

Ge6_energy_correlated_C1C2

Conclusions

- OMC is a powerful tool for testing the nuclear models and NME calculations. It is based on experimental technique that has been successfully developed since many years
- Data analysis is ongoing. We expect the final results on the total and partial muon capture rates in ¹³⁶Ba to be available soon
- An intensive multi-year PSI beam research program is ongoing

Thank you for attention!

(E, t)-distribution of the correlated events following μ -capture in ¹³⁶Ba

Preliminary

Time evolution of the 249.7 keV γ -line following OMC in ¹³⁶Ba. The corresponding total muon disappearance time is $\Lambda_{tot} = 11.1 \ \mu s^{-1}$, and the mean life-time $\tau_{\mu} = 90$ ns.

Target	¹³⁶ Ba
Sample form	¹³⁶ BaCO ₃ powder (95.27%)
Mass	2 g
Diameter	20 mm
Thickness	~ 4 mm
Muon momentum	38 MeV/c
Irradiation time	~ 138 hours
Time between beam stop and offline measurement	22 hours
Offline measurement time	168.5 hours

Isotopic composition of ^{nat}Ba:

- ¹³²Ba (0,10 %)
- ¹³⁴Ba (2,42 %)
- ¹³⁵Ba (6,59 %)
- ¹³⁶Ba (7,85 %)
- ¹³⁷Ba (11,23 %)
- ¹³⁸Ba (71,70 %)

