The XXVII International Scientific Conference of Young Scientists and Specialists (AYSS-2023)

0.11 .41

"Study of Λ - hyperon production in collisions of heavy ions with solid targets in the BM@N experiment"

Speaker: Ksenia Alishina
Scientific supervisor: Yu. Stepanenko
30.10.2023

BM@N
JINR, Dubna, Russia
NİCA

BM@N at NICA Complex

LHEP, JINR, Dubna

Physical motivation BM@N experiment

Hyperon yield in 4A GeV Au+Au:

EoS study for symmetric matter at $\rho / \rho_{0}=3-5, \rho_{0}=0.16 \mathrm{fm}^{-1}$:

- Elliptical flow of protons, mesons and hyperons;
- Sub-threshold production of strange mesons and hyperons extract nuclear;
- Incompressibility $\left(K_{m n}\right)$ from the modeled data;

Ch.Fuchs, EPJA 30 (2006) 5

EoS: The relation between density, pressure, temperature, energy and isospin asymmetry.

$$
\begin{aligned}
E_{A}(\rho, \delta) & =E_{A}(\rho, 0)+E_{A}(\rho) \delta^{2} \\
\delta & =\left(\rho_{n}-\rho_{\rho}\right) / \rho
\end{aligned}
$$

Incompressibility of the nucleus: $K_{m n}=\left.9 \rho^{2} \frac{\partial^{2}}{\partial \rho^{2}}(E / A)\right|_{\rho=\rho_{0}}$

Goal and tasks of the job

Goal of the job:

To develop an effective procedure for Λ^{0} signal extraction, which will allow us to estimate the production cross section in the $\Lambda^{0} \rightarrow p+\pi^{-}$decay channel and the Λ^{0} yields formed in the interaction of heavy ions with the nuclei of solid targets.

Tasks:

- To get the efficiency of signal reconstruction in the MC.
- To plot the mass distribution $\Lambda^{0} \rightarrow p+\pi^{-}$with efficiency ω_{i} over the kinematic range ($\mathrm{p}_{\mathrm{T}} \mathrm{y}$).
- To Define kinematic areas with low reconstruction efficiency ω_{i}.
- Perform measurement of areas of low efficiency using the GQSM model.
- To estimate the number of extracted signal by the fitting method.
- To obtain the cross sections and yields in $\mathrm{C}+\mathrm{A}(4,4.5 \mathrm{AGeV})$ reactions.

Study of the Λ hyperon in the BM@N experiment

- $\mathrm{BM} @ \mathrm{~N}$ can only register charged particle signals in the run6 configuration.
- The main focus is on the decay $\Lambda \rightarrow p \pi$ - with a decay probability of 64%.

Mass	$m_{\Lambda}=1115.683 \pm 0.006 \mathrm{MeV}$
Mean life	$\tau=(2.632 \pm 0.020) \times 10^{-10} \mathrm{c}$
Decay length	$\mathrm{c} \tau=7.89 \mathrm{~cm}$
Baryon charge	$\mathrm{B}=+1$
strangeness	$\mathrm{S}=-1$
Coulomb charge	$\mathrm{Q}=0$
$\Lambda \rightarrow p \pi^{-}$	$B R=(63.9 \pm 0.5) \%$
$\Lambda \rightarrow p \pi^{0}$	$B R=(35.8 \pm 0.5) \%$

- The Λ-decay is reconstructed by its invariant mass: $m_{i n v}=\sqrt{\left(E_{p}+E_{\pi^{-}}\right)^{2}-\left(\overrightarrow{p_{p}}+\overrightarrow{p_{\pi^{-}}}\right)^{2}}$;
- The equation includes the moments of the decay products p and π - and the opening angle of their direction vectors at the decay vertex;
The parameters set the limits of the analysis:
- Detector acceptance, momentum, and angular resolution (defines mass resolution);
- Primary and secondary vertex reconstruction, providing tools for background separation;

Setup scheme (spring 2017)

I decay reconstruction in Central tracker(Si+GEM) in $\mathrm{C}+\mathrm{A}$ interaction
$\mathbf{C}+\mathbf{A} \rightarrow \mathbf{X}, \mathbf{A}: \mathbf{C}, \mathbf{A l}, \mathbf{C u}, \mathbf{S n}, \mathbf{P b}$

Gas Electron Multiplier (GEM) system:

To measure momenta of a charged particle and reconstruct the interaction point

Selection of events with $\boldsymbol{\Lambda}$ hyperon

$$
\Lambda \rightarrow p+\pi^{-}
$$

Event topology:
PV - primary vertex
V0 - vertex of hyperon decay
dca - distance of the closest approach path - decay length

Criteria for the selection of $\boldsymbol{\Lambda}$-hyperons:
\checkmark Each track has at least 4 of the 6 hits in (GEM);
$\checkmark p_{\text {pos }}<3.9(4.4) \mathrm{GeV} / \mathrm{c}$ for a beam energy of 4 (4.5) AGeV;
$\checkmark p_{\text {neg }}>0.3 \mathrm{GeV} / \mathrm{c}$;
\checkmark dca $<1 \mathrm{~cm}$;
\checkmark Distance between the decay vertex V_{0} and the primary vertex: path > 2.0-2.5 cm (target dependent).
*K. A. Alishina, Yu. Yu. Stepanenko, A.Y Khukhaeva" Gem residuals corrections in monte-carlo simulation for the run 6 at the BM@N experiment", PEPAN letters - volume 19, part 5, 2022

Procedure in MC modelling(QGSM)

1. Divide the kinematic measuring range by $\mathrm{y}, \mathrm{p}_{\mathrm{T}}$ into $(8 \mathrm{x} 8)$ cells in the MC simulation;

Kinematic measuring range:

$0.1<p_{T}<1.05 \mathrm{GeV} / \mathrm{c}$
4 AGeV: $1.2<\mathrm{y}_{\text {lab }}<2.1$
4.5 AGeV: $1.25<y_{\text {lab }}<2.15$

h18	h28	h38	h48	h58	h68	h78	h88
h17	h27	h37	h47	h57	h67	h77	h87
h16	h26	h36	h46	h56	h66	h76	h86
h15	h25	h35	h45	h55	h65	h75	h85
h14	h24	h34	h44	h54	h64	h74	h84
h13	h23	h33	h34	h53	h63	h73	h83
h12	h22	h32	h42	h52	h62	h72	h82
h11	h21	h31	h41	h51	h61	h71	h81

2. To get the number of events generated by the MC;
3. Fit with function $(*)$ the 8×8 matrix cells of the MC for the reconstructed events with Λ.

Function for background estimation:

$$
\begin{equation*}
f_{b g}=N \cdot\left(x-M_{0}\right)^{A} \cdot e^{-B \cdot\left(x-M_{0}\right)} \tag{*}
\end{equation*}
$$

Where $\mathrm{N}, \mathrm{A}, \mathrm{B}$ are free parameters of the fitting function, $\mathrm{M}_{0}=1.078$ ГэВ $/ \mathrm{c}^{2}, x$ is the mass value.
4. To get the weight of each cell: $\omega_{i}=M C_{r e c_{-} i} / M C_{g e n_{-} i}$, where $M C_{r e c_{-} i}$ is the number of extracted MC signal (step 3), $M C_{g e n_{-} i}$ is the number of events generated by the MC ;

QGSM generated Λ^{\prime} s for P_{T}

$\mathbf{P}_{\mathrm{T}, \mathrm{GeV} / \mathrm{c}}$

Distribution of the reconstructed signal in the MC BM@:

K. Alishina

Distribution of the reconstructed signal in the MC

$1.55<y<1.65,0.20<\mathrm{pt}<0.30$
22
20
18
16
14
12
10
8
6
4
2

All events: 10292 BG: 8507 ± 87 SIG: 1785 ± 137 (χ /ndf): 1.08 M0: 1.071
$1.60<y<1.70,0.30<\mathrm{pt}<0.40 \quad$ All events: 11111

Set the boundary $\boldsymbol{\omega}_{\boldsymbol{i}} \geq \mathbf{0 . 0 1}$ - cells below this boundary are discarded.

Extrapolation procedure from simulated data

- Let's highlight the areas where cells have been discarded from consideration (Purple rectangles);
- Sum all the cells in two neighboring columns by the rapidity y;
- \quad Sum the cells in which the efficiency $\boldsymbol{\omega}_{\boldsymbol{i}} \geq \mathbf{0 . 0 1}$;
- To obtain extrapolation factors by the formula : $\mathrm{f}_{\text {extrcon }}$
$=N_{\text {all }(\mathrm{a}+\mathrm{b})} / N_{\text {con }(\mathrm{a}+b)} ;$
$N_{\text {all }(\mathrm{a}+\mathrm{b})}$ - sum of all generated events in paired columns($\left.\mathrm{a}, \mathrm{b}\right)$ by $\mathrm{y} ; N_{\text {con }(a+b)}-\operatorname{sum}$ of all considered in paired columns (a, b) by y ;
- Multiply $\mathrm{f}_{\text {extrcon }}$ by the content of the histogram $M_{i n v}\left(\Lambda \rightarrow p \pi^{-}\right)$in the data for the kinematic respective region;
- To obtain distributions $M_{\text {inv }}\left(\Lambda \rightarrow p \pi^{-}\right)$to estimate the number of reconstructed Λ - hyperons;

Extrapolation from the QGSM model

Procedure in DATA C $+\mathrm{A} \rightarrow \mathrm{X}$

1) Split the area by y, p_{T} into smaller cells in DATA (8x8);
2) Apply cuts on the efficiency $\boldsymbol{\omega}_{\boldsymbol{i}} \geq \mathbf{0 . 0 1}$;
3) Plot mass histogram with weight of $1 / \omega_{i}$;
4) Applying extrapolation;
5) Sum the cells by $\sum_{i j} y_{i j}$ and by $\sum_{i j} p T_{i j}$

Reaction $\mathrm{C}+\mathrm{C}$	signal $N_{\text {rec }}\left(p_{T} / y\right)$
4.0 AGeV	30672
4.5 AGeV	20200

- $\quad \Lambda$ signal width $\sim 2.0-4 \mathrm{MeV}$ (due to low statistics);
- Signal = hist - Background(bg) in $\mathbf{1 1 0 7 . 5 - 1 1 2 5 ~ M e V / c ^ { 2 }}$;
- Background \rightarrow 4th polynomial(Blue dashed);
- $\operatorname{err}($ stat $)=\sqrt{\sum w_{i}}$;

Procedure in DATA $\mathrm{C}+\mathrm{A} \rightarrow \mathrm{X}$

1) Split the area by y, p_{T} into smaller cells in DATA (8x8);
2) Apply cuts on the efficiency $\boldsymbol{\omega}_{\boldsymbol{i}} \geq \mathbf{0 . 0 1}$;
3) Plot mass histogram with weight of $1 / \omega_{i}$;
4) Applying extrapolation;
5) Sum the cells by $\sum_{i j} y_{i j}$ and by $\sum_{i j} p T_{i j}$

Reaction $\mathrm{C}+\mathrm{Cu}$	signal $\Lambda$$N_{\text {rec }}\left(p_{T} / y\right)$
4.0 A GeV	76295
4.5 A GeV	113404

- $\quad \Lambda$ signal width $\sim 2.0-4 \mathrm{MeV}$ (due to low statistics)
- Signal = hist - Background(bg) in $\mathbf{1 1 0 7 . 5 - 1 1 2 5} \mathrm{MeV} / \mathrm{c}^{2}$
- Background \rightarrow 4th polynomial(Blue dashed)
- $\operatorname{err}($ stat $)=\sqrt{\sum w_{i}}$

Cross sections and yields of the $\Lambda \rightarrow \mathrm{p} \pi^{+}$

The inclusive cross section σ_{Λ} and Y_{Λ} of Λ hyperon in $C+A$ interactions are calculated in bins of y (pT) according to the formulae:

$$
\begin{align*}
& \sigma_{\Lambda}(y)=\sum y\left[N_{\text {rec }}^{\Lambda}\left(y, p_{T}\right) / \varepsilon_{\text {rec }}\left(y, p_{T}\right) \cdot \varepsilon_{\text {trig }} \cdot \varepsilon_{\text {pileup }} \cdot L\right] \tag{**}\\
& \sigma_{\Lambda}\left(p_{T}\right)=\sum p_{T}\left[N_{\text {rec }}^{\Lambda}\left(y, p_{T}\right) / \varepsilon_{\text {rec }}\left(y, p_{T}\right) \cdot \varepsilon_{\text {trig }} \cdot \varepsilon_{\text {pileup }} \cdot L\right] \tag{**}\\
& Y_{\Lambda}(y)=\sigma_{\Lambda}(y) / \sigma_{\text {inel }} \\
& Y_{\Lambda}\left(p_{T}\right)=\sigma_{\Lambda}\left(p_{T}\right) / \sigma_{\text {inel }}
\end{align*}
$$

$$
(* * *)
$$

$$
(* * *)
$$

where L is the luminosity, $N_{r e c}^{\Lambda}$ is the number of recontacted Λ-hyperons, $\varepsilon_{r e c}$ is the combined efficiency of the Λ - hyperon reconstruction, $\varepsilon_{\text {trig }}$ is the trigger efficiency, $\varepsilon_{\text {pileup }}$ is the suppression factors of reconstructed events, $\sigma_{\text {inel }}$ - is the cross section for minimum bias inelastic $\mathbf{C}+\mathrm{A}$ interactions.

Beam kinetic energy 4.0 GeV

Target	$\mathbf{C}+\mathbf{C}$	$\mathbf{C}+\mathbf{C u}$
Yields total(preliminarily)	$0,0112 \pm 0,0011$ (stat)	$0,0302 \pm 0,0023$ (stat)

	Beam kinetic energy 4.5 GeV	
Target	$\mathbf{C}+\mathbf{C}$	$\mathbf{C}+\mathbf{C u}$
Yields total(preliminarily)	$0,012 \pm 0,0015$ (stat)	$0,0366 \pm 0,0028$ (stat)

Done:

\checkmark The Λ^{0} reconstruction efficiency was determined in each of the 64 cells for $\mathrm{C}+\mathrm{A}$ reaction separately in MC.
\checkmark Cells with $\omega_{i}<0.01$ were identified and excluded from the analysis.
\checkmark An extrapolation procedure was developed and applied to measure regions with $\omega_{i}<0.01$.
\checkmark Mass distributions Λ^{0} were obtained with weight ω_{i} for each cell out of 64 in the MC and physical data.
\checkmark Preliminary results on the computation of yields and cross sections were obtained. $\mathrm{C}+\mathrm{C}$, $\mathrm{C}+\mathrm{Cu}(4,4.5)$ results are reported.

Plans:

Obtain final results taking into account systematic error.
To apply the skills obtained in the analysis of Xe + GsI.

BM@:

Thank you for your attention!

