

Reconstruction of neutrino direction in the Baikal-GVD experiment by neural networks

The study was supported by a grant from the Russian Science Foundation 22-22-20063

Aleksey Leonov, MIPT Scientific supervisor: Oleg Kalashev, Doctor of Physical and Mathematical Sciences. INR RAS

Dubna 2023

Baikal-GVD Experiment

Baikal-GVD - neutrino underwater telescope

-The telescope consists of 12 clusters (winter 2023)
-Cluster - 8 strings, in the form of a regular heptagon with a center

-Each string has 36 evenly spaced detectors

Registered particles

1) Data - atmospheric muons (top) and neutrinos (bottom)

2) Goal - astrophysical neutrinos

Event Selection and Classification Air shower ↓µ-dominated \mathbf{v} only Atmosphere (exaggerated) Air shower Astrophysical source Rates: Atmospheric Muons: ~10³ Hz Atmospheric Neutrinos: ~10⁻³ Hz Astrophysical Neutrinos: ~10⁻⁷ Hz

Relevance

- Neutrinos are not deflected by a magnetic field and have a small interaction cross section.

- Astrophysical neutrinos are an important source of information about high-energy astrophysical objects.

- The angular distribution of atmospheric neutrinos is successfully modeled. - Improving the angular resolution will make it possible to reduce the background of atmospheric events when studying astrophysical neutrinos.

Data

Monte Carlo simulation[2]

- ~1.6*10⁶ events
- -Single-cluster events (≈90% of all events)
- String number > 1

Detector signal: 1)Charge 2)Response time

3-5) Coordinates

-Signals are ordered by time and cleared of noise

$$input = \{x, y, z, t, Q\}$$

[2] arxiv.org/abs/2106.06288

Reconstruction

Direction => 3-dimensional polar vector Direction => polar/azimuth angles

Angle distributions

Models

- Convolutional neural network (CNN) based on the ResNet network [3]
- Graph neural network (GNN), based on EdgeCNN[4]
- Network performance is assessed using median angular resolutions

CNN architecture

Standard reconstruction[4]

Reconstructed Angles

9

Angular resolutions CNN/GNN

Models Metrics

Median Resolution	Azimuth Angle	Polar Angle	Direction
Standard Reconstruction	5.44°	0.52°	2.64°
GCN	3.90°	0.58°	1.93°
CNN	3.82°	0.59°	1.95°

- At small polar angles, the direction is restored more accurately
- The poorer recovery of the azimuthal angle can be explained by the specific structure of the clusters.
- The GCN and CNN model show similar performance, which outperforms the standard algorithm.

Conclusions

-In this problem, deep learning algorithms are applicable and comparable in metrics to standard reconstruction.

- Neural networks perform better in the region of small polar angles

Further development:

- Optimizing the architectures of the models
- Use neural networks to predict confidence in prediction
- Transformers

THANK YOU FOR YOUR ATTENTION!

Applications

CNN, Residual connection

Graph Convolution Layer

Distribution by the number of triggered detectors

Activated OM amount distribution

Neutrino classification

Interaction of neutrinos with matter

- Large arrays of PMTs in water or ice
- Cherenkov light detected by PMTs
- "Tracks": v_{μ} CC
- "Cascades": $v_e \& v_\tau CC + NC$
- Direction reconstructed from hit positions and times
- Energy reconstructed from hit charges

Standard Reconstruction

Our Reconstruction

Technical data

 $\lambda_{scattering}^{eff} \approx 480$ м при 475 nm $\lambda_{absorption}^{max} \approx 24$ м

Tracking events: arrival angle accuracy≈ 0, 25° Cascade events: resolution≈ 2°

Monte Carlo: Interaction of neutrinos with nuclei: CTEQ4M (neutrinos with energies 10 GeV - 100 TeV Arrival of muons: CORSIKA 5.7 program on the QGSJET hadronic impact model Propagation of muons to Baikal: MUM v1.3u Cosmic rays: KASCADE based model (240 GeV – 20 PeV) Time error 5 ns; 30% on charge

Muons: Angular resolutions

Muons: metrics

1D Net					
Metrics	Azimut Angle	Polar Angle	Direction		
50% Resolution	5.34°	1.9°	4.35°		
68% Resolution	8.26°	3.09°	6.0°		
Standart Reconstruction					
Metrics	Azimut Angle	Polar Angle	Direction		
50% Resolution	12.51°	3.82°	9.11°		
68% Resolution	20.73°	6.53°	13.68°		