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Introduction



Introdu n

Particle detectors introduce smearing in measurements:

o Finite detector resolution
o Acceptance cuts (geometrical and physical)

o Binning effect in distributions
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Introduction

Goal: Use data (at detector level) and infer true desitributions (at

particle level).
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Introduction

Only then we can reliably compare the measurements against
other sources:

o Semi-Inclusive theoretical predictions

o MC generator parameter tuning

o Other experiments
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Introduction

Unfolding (deconvolution).
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Current Unfolding approach



Current Unfolding approach

Detector response can be modeled as a linear application.

Xdetector = R Xtruth + Xbackg (1)

Where R represents the detector response as Rjj = P(truthi|measurey).
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Current Unfolding approach

Various approaches exist to unfolding:

o Naive R inversion

Xtruth = R_l * (Xdetector - Xbackg) (2)

o lterative Bayesian Unfolding (IBU): Given a response matrix and a
prior distribution.

XJ.(”) = Z P,_1(truthi|measurej) * P(measurej) (3)

1
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Current Unfolding approach

Unfolding drawbacks:

o Works for binned data

o 1l-dimensional by desing (very difficult to extend to higher
dimensions)

o Does not account for relations between observables
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Machine Learning approach

Distribution reweight.

o Using a binary classifier to distinguish between two distributions

o Likelihood ratio can be aproximated and used as weight function

pe(x) | F(x)
pAX 1—f(x)

(4)

WAB =

o Distributions are binned for representation but weights are estimated
per event
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Machine Learning approach
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Figure 1: Transverse momentum distribution. pp — DY7TeV.
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Machine Learning approach

Advantages of ML reweight.

o Used for non-trivial distributions
o Easily extended to multiple dimensions

o Learns complex relations between observables
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Machine Learning approach

Iterative Neural Network Reweight: OmniFold.
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Machine Learning approach

Iterative Neural Network Reweight: OmniFold.

o Continuous generalization of IBU
o Inherits all the advantages from ML reweight

o Unfolds experimental data using multiple dimensions (possibly full
phase space)
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Work in progess

Drell-Yan phenomenology analysis with CMS data.

o Explore HEP analysis viavility with Python
e Unlock ML ecosystem and methods
o Validation of NanoAODRunl format for CMS data

e Improve accuaracy of infered distributions
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Work in progess

Drell-Yan phenomenology analysis with CMS data.
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Figure 2: Syntetic and Natural
distributions.
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Figure 3: Result of reweighted
distribution.
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Work in progess

Future work.

o Full phase space unfolding
e Unbinned and data driven analysis
o Evaluate statistical and systematical uncertanties

o Search for more robust observables where current theoretical
predictions struggle
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