

$K^+ \rightarrow \pi^0 \mu^+ \nu \gamma$ and $K^+ \rightarrow \pi^0 e^+ \nu \gamma$ decays: recent results from the

«OKA» experiment

Ilia Tiurin Institute for High Energy Physics, Protvino, Russia «OKA» collaboration (IHEP, INR, JINP.)

11 24

AYSS-2023 JINR, Dubna, Russia 30.X – 03.XI, 2023

$K^+ \rightarrow \pi^0 \mu^+ v \gamma$ and $K^+ \rightarrow \pi^0 e^+ v \gamma$ radiative decays

The matrix element for this decay has general structure:

$$T = \frac{G_f}{\sqrt{2}} e V_{us} \epsilon^{\alpha}(q) \left\{ (V_{\alpha\beta} - A_{\alpha\beta}) \bar{u}(p_{\nu}) \gamma^{\beta}(1 - \gamma^5) v(p_l) + \frac{F_{\beta}}{2p_l q} \bar{u}(p_{\nu}) \gamma^{\beta}(1 - \gamma^5) (m_l - \hat{p}_l - \hat{q}) \gamma_{\alpha} v(p_l) \right\}.$$

First term of the *T* describes the bremsstrahlung of kaon and the direct emission, (*a*, *b*). The lepton bremsstrahlung presented by the second part of *T* and (*c*).

Diagrams describing $K^+ \rightarrow \pi^0 l^+ \nu \gamma$.

$K^+ \rightarrow \pi^0 l^+ v \gamma$ decays: motivation

 $K^+ \rightarrow \pi^0 l^+ v \gamma$ decays are among those kaon decays where new physics beyond Standard Model can be probed. These decays are especially interesting as they are sensitive to T-odd contributions. According to CPT theorem, observation of T-violation is equivalent to observation of CP-violating effects.

Second, precise tests of ChPT.

Third, it is interesting to test lepton universality:

 $\frac{Br(K_{\mu 3\gamma})}{Br(K_{e3\gamma})}.$

$K^+ \rightarrow \pi^0 l^+ v \gamma$: important observables

Important experimental observable used in CP-violation searches is the T-odd correlation for $K^+ \rightarrow \pi^0 \mu^+ v \gamma$ decay defined as:

$$\xi_{\pi l\gamma} = \frac{1}{M_K^3} \vec{p}_{\gamma} \cdot [\vec{p}_{\pi} \times \vec{p}_l].$$

To establish the presence of nonzero triple-product correlations, one construct a Todd asymmetry of the form:

$$A_{\xi} = \frac{N_{+} - N_{-}}{N_{+} + N_{-}},$$

 $N_{+}(-)$ – number of events with $\xi > (<) 0$.

IHEP PS U-70

The OKA collaboration operates at the IHEP Protvino U-70 Proton Synchrotron. Detector is located in positive RF-separated beam with 12.5% of *K*-meson 17.7 GeV/c 3·10⁵ kaons per 2 sec U-70 spill. Separation is provided by two SC deflectors cooled by superfluid He.

OKA detector

$$Trg = S_1 \cdot S_2 \cdot S_3 \cdot S_4 \cdot ar{\check{C_1}} \cdot \check{C_2} \cdot ar{S}_{bk} \cdot (E_{GAMS} > 2.5 GeV)$$

 $S_1 - S_4$ are scintillating counters; \check{C}_1 , \check{C}_2 – Cherenkov counters (\check{C}_1 sees pions, \check{C}_2 pions and kaons); S_{bk} – two scintillation counters on the beam axis after the magnet to suppress undecayed particles.

- 1. Beam spectrometer: PC's; 2. Decay volume with Veto system;
- 3. PC's and DT's for magnetic spectrometer;
- 4. Magnet;

- 5. Matrix hodoscope: SiPM;
- 6. Gamma detectors: GAMS-2000;
- 7. Muon identification: HCAL + μ *C*;

Decay Volume with Veto system

DV: 11m; Veto: 670 Lead-Scintillator sandwiches 20×(5mm Sc + 1.5mm Pb), WLS readout.

Veto system

$K^+ \rightarrow \pi^0 \mu^+ \nu \gamma$ experimental status

Contrary to the $K_{e_{3\gamma}}$ decay, where high statistics (OKA, NA62) measurements are available, $K_{\mu_{3\gamma}}$ decay is poorly known.

$\Gamma(~K^+ o \pi^0 \mu^+ u_\mu \gamma~)/\Gamma_{ m total}$										
VALUE (10^{-5})		CL%	EVTS	DOCUMENT	D	TECN	CHG	COMMENT		
$\textbf{1.25} \pm \textbf{0.25}$	OUR AVERAGE									
$1.10 \pm \! 0.32 \pm \! 0.05$			23	¹ ADLER	2010	B787		$30 < E_\gamma <$ 60 MeV		
$1.46 \pm 0.22 \pm 0.32$		153	² TCHIKILEV	2007	ISTR	-	$30 < E_\gamma <$ 60 MeV			
 We do not use the following data for averages, fits, limits, etc. 										
$2.4 \pm \! 0.5 \pm \! 0.6$			125	SHIMIZU	2006	K470	+	$E_\gamma >$ 30 MeV; $\Theta_{\mu\gamma} > 20^\circ$		
<6.1		90	0	LIUNG	1973	HLBC	+	$E(\gamma$) $>$ 30 MeV		

¹ Value obtained from B($K^+ \rightarrow \pi^0 \mu^+ \nu_\mu \gamma$) = (2.51 ±0.74 ±0.12) ×10⁻⁵ obtained in the kinematic region $E_\gamma > 20$ MeV, and then theoretical $K_{\mu3\gamma}$ spectrum has been used. Also B($K^+ \rightarrow \pi^0 \mu^+ \nu_\mu \gamma$) = (1.58 ±0.46 ±0.08) ×10⁻⁵, for $E_\gamma > 30$ MeV and $\theta_{\mu\gamma} > 20^\circ$, was determined.

² Obtained from measuring B($K_{\mu3\gamma}$) / B($K_{\mu3}$) and using PDG 2002 value B($K_{\mu3}$) = 3.27%. B($K_{\mu3\gamma}$) = (8.82 ±0.94 ±0.86) × 10⁻⁵ is obtained for 5 MeV < E_{γ} < 30 MeV.

$K^+ \rightarrow \pi^0 l^+ v \gamma$ theoretical status

	Br ($K_{\mu 3\gamma}$)	$A_{\xi}\left(K_{\mu3\gamma} ight)$	$\mathrm{Br}\left(K_{e^{3\gamma}}\right)$	$A_{\xi}\left(K_{e3\gamma} ight)$
Bijnens et al.	1.9×10^{-5}		2.8×10^{-4}	
Braguta et al.	2.15×10^{-5}	1.14×10^{-4}	3.18×10^{-4}	-0.59×10^{-4}
Khriplovich et al.	1.81×10^{-5}	2.38×10^{-4}	2.72×10^{-4}	-0.93×10^{-4}

Theoretical calculations for $K_{e_{3\gamma}}$ branching. The following cuts in the kaon rest frame are used: $E^* \ge 30$ MeV, $\theta_{l\gamma} \ge 20^\circ$, where E^* is the photon energy. Theoretical errors were not specified by autors.

K_{13y} decays: background

 K_{l3} is used as normalization channel. Two main observables for signal and normalization events are used: reconstructed mass $M(K_{l3\gamma}) = M(l^+, \pi^0, \nu, \gamma)$, where all missing momentum is attributed to ν and $M_{\nu} = 0$ is assumed and a similar observable $M(K_{l3}) = M(l^+, \pi^0, \nu)$.

1) $K^+ \rightarrow l^+ v \pi^0$ with an extra photon. The main source of extra photons is lepton interaction in the detector;

2) $K^+ \rightarrow \pi^+ \pi^0 \pi^0$ where one of the π^0 photon is not detected and π^+ is misidentified as a l^+ ;

3) $K^+ \rightarrow \pi^+ \pi^0$ with a "fake photon" and π^+ misidentified as a l^+ . The fake photons can come from $\pi^+ n$ interactions in the gamma detector and from accidentals;

4) $K^+ \rightarrow \pi^+ \pi^0 \gamma$ when π^+ is misidentified as a l^+ ;

5) $K^+ \rightarrow \pi^0 \pi^0 l^+ v$ when one γ is lost.

All these background sources are included in MC calculations.

In $K_{\mu_{3\gamma}}$ decays backgrounds 1, 2 and 4 are dominated.

$K_{\mu 3\gamma}$ event selection

General criteria (all one track events): good quality beam with proper momentum, vertex within decay volume, good quality secondary track with reasonable χ^2 etc.

Cut	$K_{\mu3} \mid K_{\mu3\gamma}$
• Muon compatible signal in GAMS, HCal and μ C	++
• 2 e/m showers in GAMS with $E_{\gamma} > 0.6 \text{ GeV}$	+
• 3 e/m showers in GAMS with $E_{\gamma} > 0.6 \text{ GeV}$	-+
• $ M_{\gamma\gamma} - M_{\pi0} < 20$ MeV (best combination for $K_{\mu3\gamma}$)	++
 Missing energy > 0.5 GeV 	++
 No amplitude overflow in GAMS counters 	++
• The position of radiative photon at GAMS surface is	
not near beam hole nor at the boudary	-+
 Total energy in Veto and BGD is below threshold 	++
• Number of additional track segments after spectrometer	
magnet is zero	++
• $K_{\mu3}$ special: $\cos(\mu^+\pi^0)$ in rest frame > -0.95.	+
Effective against $K^+ \rightarrow \pi^+ \pi^0$ bkg	
• $K_{\mu 3\gamma}$ special: missing mass MM($\pi^+\pi^0$) < 0.12 GeV.	
Effective against $K^+ \rightarrow \pi^+ \pi^0 \pi^0$ bkg	-+

In kaon rest frame. Left: distribution of $cos(\mu\gamma)$, right: energy of odd gamma distribution. Magenta – MC $K_{\mu3\gamma}$ signal, red – MC bkg from $K_{\pi+\pi0\pi0}$, green – MC bkg from $K_{\pi+\pi0\gamma}$, blue – MC bkg from $K_{\mu3}$.

Left – $K_{\mu3\gamma}$ invariant mass distribution. Right – ξ distribution. Top – with bkg, bottom – bkg substracted. Magenta – MC $K_{\mu3\gamma}$ signal, red – MC bkg from $K_{\pi+\pi0\pi0}$, green – MC bkg from $K_{\pi+\pi0\gamma}$, blue – MC bkg from $K_{\mu3}$.

$K_{e_{3\gamma}}$ event selection

Cut

- 4 e/m showers in GAMS with $E_{\gamma} > 0.7$ GeV;
- One charged track is identified as e^+ with 0.8 < E/p < 1.2;
- Missing energy > 0.5 GeV;
- No amplitude overflow in GAMS counters;
- The position of radiative photon at GAMS surface is not near beam hole nor at the boudary;
- Total energy in Veto and BGD is below threshold;
- Number of additional track segments after spectrometer magnet is zero;
- The effective mass for γ -pair 0.12 < M_{$\gamma\gamma$} < 0.15 GeV;
- $\Delta y = |y_{\gamma} y_{e}| > 3$ cm, where *y* is the vertical coordinate of a particle in the e/m calorimeter (the magnetic field turns charged particles in the *xz*-plane);
- $|x_v, y_v| < 100$ cm. The reconstructed missing momentum direction must cross the active area of the e/m calorimeter.
- The reconstructed mass of the system $M(K^+ \rightarrow e^+ v \pi^0 \gamma) > 0.45 \text{GeV}$
- $|\mathbf{M}^2_{\text{miss}}(\pi^0 e^+ \gamma)| = (\mathbf{P}_K \mathbf{P}_{\pi^0} \mathbf{P}_e \mathbf{P}_{\gamma})^2 < 0.006 \text{ GeV}^2;$
- 4 mrad < $\theta_{e\gamma}$ < 80 mrad;

In kaon rest frame. Left: distribution of cos(ey), right: energy of odd gamma distribution. Histrogram – MC signal plus total background, MC background – dotted line histrogram.

Left – $K_{e_{3\gamma}}$ invariant mass distribution. Right – ξ distribution. Total background – dotted line histogram.

Preliminary results and conclusion

- We have 960 ± 55 (stat) $K_{\mu_{3\gamma}}$ and 19295 (101200 candidates) $K_{e_{3\gamma}}$ signal events;
- $Br(K_{\mu 3\gamma})/Br(K_{\mu 3}) = (4.45 \pm 0.25 \text{ (stat)}) \times 10^{-4}, 30 < E^* < 60 \text{ MeV};$
- Using PDG value $Br(K_{\mu3}) = 3.352\%$: $Br(K_{\mu3\gamma}) = (1.492 \pm 0.085 \text{ (stat)}) \times 10^{-5}$, which is in agreement with ISTRA+ measurement, but statistical errors is 3 times smaller;
- Theory: 1.9 × 10⁻⁵ (Bijinens), 2.15 × 10⁻⁵ (Braguta), 1.81 × 10⁻⁵ (Khriplovich);
- $A_{\xi} = -0.006 \pm 0.069$. Theory: 1.14×10^{-4} (Braguta), 2.38×10^{-4} (Khriplovich);
- $Br(K_{e3\gamma})/Br(K_{e3}) = (58.7 \pm 1.0 \text{ (stat)} \pm 1.5 \text{ (syst)}) \times 10^{-4}, 30 < E^* < 60 \text{ MeV} and \theta_{e\gamma} > 20^{\circ};$
- Using PDG value $Br(K_{e3}) = 5.07\%$: $Br(K_{e3\gamma}) = (2.97 \pm 0.13) \times 10^{-4}$;
- Theory: 2.8 × 10⁻⁴ (Bijinens), 3.18 × 10⁻⁴ (Braguta), 2.72 × 10⁻⁴ (Khriplovich);
- $A_{\xi} = (+4.4 \pm 7.9 \text{ (stat)} \pm 1.9 \text{ (syst)}) \times 10^{-3}$. Theory: -0.59×10^{-4} (Braguta), -0.93×10^{-4} (Khriplovich);
- Our results are preliminary.

Thank you for your attention!