$K^+ \to \pi^0 \mu^+\nu\gamma$ and $K^+ \to \pi^0 e^+\nu\gamma$ decays: recent results from the «OKA» experiment

Ilia Tiurin
Institute for High Energy Physics, Protvino, Russia
«OKA» collaboration (IHEP, INR, JINR)

AYSS-2023
JINR, Dubna, Russia
30.X – 03.XI, 2023
The matrix element for this decay has general structure:

\[
T = \frac{G_f}{\sqrt{2}} e V_{us} \epsilon^{\alpha}(q) \left\{ (V_{\alpha \beta} - A_{\alpha \beta}) \bar{u}(p_\nu) \gamma^\beta (1 - \gamma^5) v(p_l) + \frac{F_\beta}{2p_l q} \bar{u}(p_\nu) \gamma^\beta (1 - \gamma^5) (m_l - \hat{p}_l - \hat{q}) \gamma^\alpha v(p_l) \right\}.
\]

First term of the \(T \) describes the bremsstrahlung of kaon and the direct emission, (a, b). The lepton bremsstrahlung presented by the second part of \(T \) and (c).

Diagrams describing \(K^+ \to \pi^0 l^+ \nu \gamma \).
$K^+ \rightarrow \pi^0 l^+ \nu \gamma$ decays are among those kaon decays where new physics beyond Standard Model can be probed. These decays are especially interesting as they are sensitive to T-odd contributions. According to CPT theorem, observation of T-violation is equivalent to observation of CP-violating effects.

Second, precise tests of ChPT.

Third, it is interesting to test lepton universality:

$$\frac{Br(K_{\mu 3\gamma})}{Br(K_{e 3\gamma})}.$$
Important experimental observable used in CP-violation searches is the T-odd correlation for $K^+ \to \pi^0\mu^+\nu\gamma$ decay defined as:

$$\xi_{\pi l\gamma} = \frac{1}{M_K^3} \vec{p}_\gamma \cdot \left[\vec{p}_\pi \times \vec{p}_l \right].$$

To establish the presence of nonzero triple-product correlations, one construct a T-odd asymmetry of the form:

$$A_\xi = \frac{N_+ - N_-}{N_+ + N_-},$$

$N_+(\cdot)$ – number of events with $\xi >(<) 0$.
The OKA collaboration operates at the IHEP Protvino U-70 Proton Synchrotron. Detector is located in positive RF-separated beam with 12.5% of K-meson 17.7 GeV/c $3 \cdot 10^5$ kaons per 2 sec U-70 spill. Separation is provided by two SC deflectors cooled by superfluid He.
$Trg = S_1 \cdot S_2 \cdot S_3 \cdot S_4 \cdot \tilde{C}_1 \cdot \tilde{C}_2 \cdot \tilde{S}_{bk} \cdot (E_{GAMS} > 2.5 GeV)$

$S_1 - S_4$ are scintillating counters; \tilde{C}_1, \tilde{C}_2 – Cherenkov counters (\tilde{C}_1 sees pions, \tilde{C}_2 pions and kaons); S_{bk} – two scintillation counters on the beam axis after the magnet to suppress undecayed particles.

1. Beam spectrometer: PC’s;
2. Decay volume with Veto system;
3. PC’s and DT’s for magnetic spectrometer;
4. Magnet;
5. Matrix hodoscope: SiPM;
7. Muon identification: HCAL + μC;
AYSS-2023

Decay Volume with Veto system

DV: 11m;
Veto: 670 Lead-Scintillator sandwiches $20 \times (5\text{mm Sc} + 1.5\text{mm Pb})$, WLS readout.

Inside

Veto system
Contrary to the $K_{e3\gamma}$ decay, where high statistics (OKA, NA62) measurements are available, $K_{\mu3\gamma}$ decay is poorly known.

$K^+ \rightarrow \pi^0\mu^+\nu\gamma$ experimental status

<table>
<thead>
<tr>
<th>VALUE (10^{-5})</th>
<th>CL%</th>
<th>EVTS</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>CHG</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.25 ± 0.25</td>
<td>OUR AVERAGE</td>
<td>1.10 ± 0.32 ± 0.05</td>
<td>23</td>
<td>1 ADLER</td>
<td>2010</td>
<td>B787</td>
</tr>
<tr>
<td>1.46 ± 0.22 ± 0.32</td>
<td>153</td>
<td>TCHIKILEV</td>
<td>2007</td>
<td>ISTR</td>
<td>-</td>
<td>$30 < E_\gamma < 60$ MeV</td>
</tr>
<tr>
<td>2.4 ± 0.5 ± 0.6</td>
<td>125</td>
<td>SHIMIZU</td>
<td>2006</td>
<td>K470</td>
<td>+</td>
<td>$E_\gamma > 30$ MeV, $\Theta_{\mu\gamma} > 20^\circ$</td>
</tr>
<tr>
<td><6.1</td>
<td>90</td>
<td>LIUNG</td>
<td>1973</td>
<td>HLBC</td>
<td>+</td>
<td>$E(\gamma) > 30$ MeV</td>
</tr>
</tbody>
</table>

1. Value obtained from $B(K^+ \rightarrow \pi^0\mu^+\nu\gamma) = (2.51 \pm 0.74 \pm 0.12) \times 10^{-5}$ obtained in the kinematic region $E_\gamma > 20$ MeV, and then theoretical $K_{\mu3\gamma}$ spectrum has been used. Also $B(K^+ \rightarrow \pi^0\mu^+\nu\gamma) = (1.58 \pm 0.46 \pm 0.08) \times 10^{-5}$, for $E_\gamma > 30$ MeV and $\Theta_{\mu\gamma} > 20^\circ$, was determined.

2. Obtained from measuring $B(K_{\mu3\gamma}) / B(K_{\mu3})$ and using PDG 2002 value $B(K_{\mu3}) = 3.27\%$. $B(K_{\mu3}) = (8.82 \pm 0.94 \pm 0.86) \times 10^{-5}$ is obtained for 5 MeV $< E_\gamma < 30$ MeV.
$K^+ \rightarrow \pi^0 l^+ \nu\gamma$ theoretical status

<table>
<thead>
<tr>
<th></th>
<th>$\text{Br} (K\mu_3\gamma)$</th>
<th>$A_\xi (K\mu_3\gamma)$</th>
<th>$\text{Br} (K\epsilon_3\gamma)$</th>
<th>$A_\xi (K\epsilon_3\gamma)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bijnens et al.</td>
<td>1.9×10^{-5}</td>
<td>—</td>
<td>2.8×10^{-4}</td>
<td>—</td>
</tr>
<tr>
<td>Braguta et al.</td>
<td>2.15×10^{-5}</td>
<td>1.14×10^{-4}</td>
<td>3.18×10^{-4}</td>
<td>-0.59×10^{-4}</td>
</tr>
<tr>
<td>Khriplovich et al.</td>
<td>1.81×10^{-5}</td>
<td>2.38×10^{-4}</td>
<td>2.72×10^{-4}</td>
<td>-0.93×10^{-4}</td>
</tr>
</tbody>
</table>

Theoretical calculations for $K\epsilon_3\gamma$ branching. The following cuts in the kaon rest frame are used: $E^* \geq 30$ MeV, $\theta_{l\gamma} \geq 20^\circ$, where E^* is the photon energy. Theoretical errors were not specified by authors.
K_{l3} is used as normalization channel. Two main observables for signal and normalization events are used: reconstructed mass $M(K_{l3\gamma}) = M(l^+, \pi^0, \nu, \gamma)$, where all missing momentum is attributed to ν and $M_\nu = 0$ is assumed and a similar observable $M(K_{l3}) = M(l^+, \pi^0, \nu)$.

1) $K^+ \rightarrow l^+\nu\pi^0$ with an extra photon. The main source of extra photons is lepton interaction in the detector;
2) $K^+ \rightarrow \pi^+\pi^0\pi^0$ where one of the π^0 photon is not detected and π^+ is misidentified as a l^+;
3) $K^+ \rightarrow \pi^+\pi^0$ with a “fake photon” and π^+ misidentified as a l^+. The fake photons can come from π^+n interactions in the gamma detector and from accidentals;
4) $K^+ \rightarrow \pi^+\pi^0\gamma$ when π^+ is misidentified as a l^+;
5) $K^+ \rightarrow \pi^0\pi^0l^+\nu$ when one γ is lost.

All these background sources are included in MC calculations.

In $K_{\mu3\gamma}$ decays backgrounds 1, 2 and 4 are dominated.
$K_{\mu3\gamma}$ event selection

General criteria (all one track events): good quality beam with proper momentum, vertex within decay volume, good quality secondary track with reasonable χ^2 etc.

Cut

<table>
<thead>
<tr>
<th>$K_{\mu3}$</th>
<th>$K_{\mu3\gamma}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muon compatible signal in GAMS, HCal and μC</td>
<td>++</td>
</tr>
<tr>
<td>2 e/m showers in GAMS with $E_\gamma > 0.6$ GeV</td>
<td>-+</td>
</tr>
<tr>
<td>3 e/m showers in GAMS with $E_\gamma > 0.6$ GeV</td>
<td>--</td>
</tr>
<tr>
<td>$</td>
<td>M_{\gamma\gamma} - M_{\pi0}</td>
</tr>
<tr>
<td>Missing energy > 0.5 GeV</td>
<td>++</td>
</tr>
<tr>
<td>No amplitude overflow in GAMS counters</td>
<td>++</td>
</tr>
<tr>
<td>The position of radiative photon at GAMS surface is not near beam hole nor at the boundary</td>
<td>--</td>
</tr>
<tr>
<td>Total energy in Veto and BGD is below threshold</td>
<td>++</td>
</tr>
<tr>
<td>Number of additional track segments after spectrometer magnet is zero</td>
<td>++</td>
</tr>
</tbody>
</table>
| $K_{\mu3}$ special: $\cos(\mu^+\pi^0)$ in rest frame > -0.95.
 Effective against $K^+ \rightarrow \pi^+\pi^0$ bkg | +- |
| $K_{\mu3\gamma}$ special: missing mass $MM(\pi^+\pi^0) < 0.12$ GeV.
 Effective against $K^+ \rightarrow \pi^+\pi^0\pi^0$ bkg | -- |
In kaon rest frame. Left: distribution of $\cos(\mu_3 \gamma)$, right: energy of odd gamma distribution. Magenta – MC $K_{\mu3\gamma}$ signal, red – MC bkg from $K_{\pi^+\pi^0\pi^0}$, green – MC bkg from $K_{\pi^+\pi^0\gamma}$, blue – MC bkg from $K_{\mu3}$.
AYSS-2023

K_{μ3γ} event selection

![Graphs showing event selection](image)

Left – $K_{μ3γ}$ invariant mass distribution. Right – $ξ$ distribution. Top – with bkg, bottom – bkg subtracted. Magenta – MC $K_{μ3γ}$ signal, red – MC bkg from $K_{π^+π^0π^0}$, green – MC bkg from $K_{π^+π^0γ}$, blue – MC bkg from $K_{μ3}$.
Ke3γ event selection

Cut

- 4 e/m showers in GAMS with $E_γ > 0.7$ GeV;
- One charged track is identified as e^+ with $0.8 < E/p < 1.2$;
- Missing energy > 0.5 GeV;
- No amplitude overflow in GAMS counters;
- The position of radiative photon at GAMS surface is not near beam hole nor at the boundary;
- Total energy in Veto and BGD is below threshold;
- Number of additional track segments after spectrometer magnet is zero;
- The effective mass for γ-pair $0.12 < M_{γγ} < 0.15$ GeV;
- $\Delta y = |y_γ - y_e| > 3$ cm, where y is the vertical coordinate of a particle in the e/m calorimeter (the magnetic field turns charged particles in the xz-plane);
- $|x_ν , y_ν| < 100$ cm. The reconstructed missing momentum direction must cross the active area of the e/m calorimeter.
- The reconstructed mass of the system $M (K^+ → e^+ ν π^0 γ) > 0.45$ GeV
- $|M^2_{miss (π^0 e^+ γ)}| = (P_K - P_{π^0} - P_e - P_γ)^2 < 0.006$ GeV2;
- 4 mrad $< \theta_{eγ} < 80$ mrad;
In kaon rest frame. Left: distribution of \(\cos(\Theta_{e\gamma}) \), right: energy of odd gamma distribution. Histrogram – MC signal plus total background, MC background – dotted line histogram.
Left – $K_{e3\gamma}$ invariant mass distribution. Right – ξ distribution. Total background – dotted line histogram.
Preliminary results and conclusion

• We have 960 ± 55 (stat) $K_{\mu3\gamma}$ and 19295 (101200 candidates) $K_{e3\gamma}$ signal events;

• $Br(K_{\mu3\gamma})/Br(K_{\mu3}) = (4.45 \pm 0.25$ (stat)) $\times 10^{-4}$, $30 < E^* < 60$ MeV;

• Using PDG value $Br(K_{\mu3}) = 3.352\%$: $Br(K_{\mu3\gamma}) = (1.492 \pm 0.085$ (stat)) $\times 10^{-5}$, which is in agreement with ISTRA+ measurement, but statistical errors is 3 times smaller;

• Theory: 1.9×10^{-5} (Bijinens), 2.15×10^{-5} (Braguta), 1.81×10^{-5} (Khriplovich);

• $A_\xi = -0.006 \pm 0.069$. Theory: 1.14×10^{-4} (Braguta), 2.38×10^{-4} (Khriplovich);

• $Br(K_{e3\gamma})/Br(K_{e3}) = (58.7 \pm 1.0$ (stat) ± 1.5 (syst)) $\times 10^{-4}$, $30 < E^* < 60$ MeV and $\theta_{e\gamma} > 20^\circ$;

• Using PDG value $Br(K_{e3}) = 5.07\%$: $Br(K_{e3\gamma}) = (2.97 \pm 0.13) \times 10^{-4}$;

• Theory: 2.8×10^{-4} (Bijinens), 3.18×10^{-4} (Braguta), 2.72×10^{-4} (Khriplovich);

• $A_\xi = (+4.4 \pm 7.9$ (stat) ± 1.9 (syst)) $\times 10^{-3}$. Theory: -0.59×10^{-4} (Braguta), -0.93×10^{-4} (Khriplovich);

• Our results are preliminary.
Thank you for your attention!