

Structure, Neutron Scattering Cross Sections, and Applications of Fluorine-Intercalated Graphite

Dubois M.¹, Lychagin E.², Muzychka A.², Nekhaev G.², Nesvizhevsky V.³, <u>Nezvanov A.²</u>, Shapiro D.⁴, Strelkov A.², Turlybekuly K.^{2,4}

¹Université Clermont Auvergne, 63178, Auvergne, France ²Joint Institute for Nuclear Research, 141980, Dubna ³Institut Max von Laue – Paul Langevin, 38042, Grenoble, France ⁴Institute of Nuclear Physics of the Republic of Kazakhstan, 050032, Almaty, Kazakhstan

> XXVII International Scientific Conference of Young Scientists and Specialists October 30 – November 3, 2023 Dubna, Russia

Experiment Scheme

01.11.2023, AYSS-2023

Calibration Using the Pure Graphite Sample

- The direct beam was restored using the pair of monitor/detector spectrums.
- TOF delay time determined from the direct beam data on different sample-monitor distances.

Experimental Data

Original graphite powder

01.11.2023, AYSS-2023

Interplanar Spacing of Intercalated Graphite

- (100) plane of ICG
- $\lambda = \{3, 4, 5, 6, 7, 8, 9\}$ Å
- $\Delta \lambda = 0,2 \text{ Å}$
- Peak positions θ from Pseudo-Voigt fit of experimental data
- d from $2d\sin\theta = \lambda$

01.11.2023, AYSS-2023

Nezvanov A.Yu.

5/14

Estimating the Diffraction Cross-Sections

Some Photos from the Experiments

Sample Environment

The sample and sample holder

Graphite Foils

Some Photos from the Experiments

A Graphite Foil

Teflon Sample

Experiment general view

Intercalated Graphite Applications: <u>Ultracold and Very Cold Neutron Sources*</u>

A precise calculation performed using the MCNP program shows that in a hemispherical layer of liquid deuterium 20 cm thick, the flux density of cold neutrons with a wavelength of 9 Å is $\Phi_c(9\text{\AA}) = 1.54 \cdot 10^{10} \text{ cm}^{-2} \text{ s}^{-1} \text{\AA}^{-1}$. *The presentation slide from "The first steps of development and construction of the high-intensity Ultracold neutrons source at the WWR-K reactor" by Dr. K. Turlybekuly at the AYSS-2023, Session of the Experimental Nuclear Physics on Wednesday, 01.11.2023.

01.11.2023, AYSS-2023

Very Cold Nuetron Reflector

Diamond Nanoparticle Cross-Section Calculation

- Geometry of scattering: neutron beam with a wavelength λ and a unit vector *s_i* along axis Z falls on spherical nanoparticle, located at (0,0,0)
- Nanoparticle is a set of N atoms arranged in certain coordinates r_i defined by the unit cell of a diamond
- Cross-section of scattering at direction s_f results from the sum of waves, produced by each atom of a nanoparticle

•
$$\frac{d\sigma}{d\Omega} = \frac{1}{N} * \left| b * \sum_{i} e^{-\frac{2\pi i}{\lambda} (s \cdot r_i)} \right|^2$$

• $b - \text{carbon scattering length}$
• $s = s_f - s_i$ - scattering vector

01.11.2023, AYSS-2023

Diamond Nanoparticle Cross-Section Calculation

01.11.2023, AYSS-2023

Diamond Nanoparticle Cross-Section Calculation

01.11.2023, AYSS-2023

Comparison with the Experiment (preliminary)

- Experiment:
 - PF1b, ILL (Grenoble, France)
 - ToF
 - $\lambda = 2 \div 9$ Å, $\Delta \lambda = 0,2$ Å
 - $\theta = 10^{\circ} \div 150^{\circ}$
 - Cylindric sample holder: d = 1,2 cm, h = 2,8 cm
 - $\rho_{sample} \approx 0,4 \frac{g}{cm^3}$
- Calculation:

•
$$\sigma = \int_{\Omega} \frac{d\sigma}{d\Omega} d\Omega = \int_{0}^{2\pi} \int_{\theta_{1}}^{\theta_{2}} \frac{d\sigma}{d\Omega} \sin \theta \, d\theta d\phi$$

• No particle rotation (i.e. wrong diffraction treatment)!

01.11.2023, AYSS-2023

Comparison with the Experiment (preliminary)

01.11.2023, AYSS-2023

Conclusions and Future Plans

Intercalated Graphite's diffraction limit is around 9 Å. Bragg's cut-off for diamond is 4.1 Å.

We continue to analyze the preliminary results.

- However, the Intercalated Graphite seems to be an effective reflector for cold neutrons up to 9Å.
- Moreover, the nanodiamond diffraction data allow us to extend the existing models to cold and thermal neutron spectrum ranges.
- The results might be used for the development of advances reflectors, focusing systems, filters, environments of low-energy neutron sources!

Cold Neutrons

~200-1000 m/s

Alexander NEZVANOV, Ph.D. <u>nezvanov@jinr.ru</u> Frank Laboratory of Neutron Physics Joint Institute for Nuclear Research, Dubna.