A model for the magnetic field in the inner heliosphere

N. Galikyan*, V. Alekseev +, A. Mayorov*, R. Yulbarisov *

* National Research Nuclear University MEPhI + P.G. Demidov Yaroslavl State University

N. Galikyan (NRNU MEPHI)

A model for the magnetic field in the inner heliosphere

1 / 11

Aim of research

• Creation of map of magnetic field in the inner heliosphere, with the irregularities in the field

Aim of research

- Creation of map of magnetic field in the inner heliosphere, with the irregularities in the field
- Comparison of the obtained model with the spacecrafts' data, such as ACE, Ulysses, Parker Solar Probe and others.

Total magnetic field

$$ec{B}_{ ext{total}} = ec{B}_{ ext{reg}} + ec{B}_{ ext{iso}} + ec{B}_{ ext{aniso}}$$

N. Galikyan (NRNU MEPHI)

A model for the magnetic field in the inner heliosphere

-

Total magnetic field

$$ec{B}_{ ext{total}} = ec{B}_{ ext{reg}} + ec{B}_{ ext{iso}} + ec{B}_{ ext{aniso}}$$

• \vec{B}_{reg} — Regular component of magnetic field described by Parker's model

Total magnetic field

$$ec{B}_{ ext{total}} = ec{B}_{ ext{reg}} + ec{B}_{ ext{iso}} + ec{B}_{ ext{aniso}}$$

- \vec{B}_{reg} Regular component of magnetic field described by Parker's model
- Random fields \vec{B}_{iso} and \vec{B}_{aniso}

Total magnetic field

$$ec{B}_{ ext{total}} = ec{B}_{ ext{reg}} + ec{B}_{ ext{iso}} + ec{B}_{ ext{aniso}}$$

- \vec{B}_{reg} Regular component of magnetic field described by Parker's model
- Random fields \vec{B}_{iso} and \vec{B}_{aniso}
 - \vec{B}_{iso} Isotropic component, pointing to a random direction

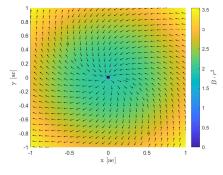
Total magnetic field

$$ec{B}_{ ext{total}} = ec{B}_{ ext{reg}} + ec{B}_{ ext{iso}} + ec{B}_{ ext{aniso}}$$

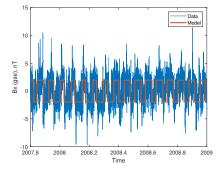
- \vec{B}_{reg} Regular component of magnetic field described by Parker's model
- Random fields \vec{B}_{iso} and \vec{B}_{aniso}
 - \vec{B}_{iso} Isotropic component, pointing to a random direction
 - \vec{B}_{aniso} Anisotropic component, collinear with \vec{B}_{reg}

Regular field

Regular field is given by Parker's model, which assumes, that the field lines are frozen inside the solar wind plasma.


Parker's model

$$\vec{B}_{\rm reg} = \pm B_0 \frac{r_0^2}{r^2} \left(\vec{e_r} - \frac{\Omega(r - r_s)}{V} \sin \theta \vec{e_\varphi} \right) H(\theta - \theta_{\rm CS})$$


Here $H(\theta - \theta_{CS})$ takes into account the heliospheric current sheet (HCS) as follows:

$$\mathcal{H}(heta - heta_{\mathsf{CS}}) = ext{tanh}\left(rac{r(heta_{\mathsf{CS}} - heta)}{L}
ight)$$

Visualisation of the regular field

The regular field at z = 0 slice.

The \times component comparison in GSE coordinates across ACE spacecraft trajectory.

Noise Generation

A 4D random field $\vec{\mathcal{G}}_4$ is generated through Fourier transformation of the power spectrum $\sim k^{-\frac{5}{3}}$, such that $\langle \vec{\mathcal{G}}_4 \rangle = 0$ and $\langle \vec{\mathcal{G}}_4^2 \rangle = 1$. The first coordinate corresponds to the time dynamics of the random field, from the rest of them a spherical surface is sliced, which in its turn is corresponded with the source surface of the heliosphere. This procedure leads to a random field $\vec{\mathcal{G}}(t, \theta, \varphi)$ describing the irregularities on the source surface.

Noise Generation

A 4D random field $\vec{\mathcal{G}}_4$ is generated through Fourier transformation of the power spectrum $\sim k^{-\frac{5}{3}}$, such that $\langle \vec{\mathcal{G}}_4 \rangle = 0$ and $\langle \vec{\mathcal{G}}_4^2 \rangle = 1$. The first coordinate corresponds to the time dynamics of the random field, from the rest of them a spherical surface is sliced, which in its turn is corresponded with the source surface of the heliosphere. This procedure leads to a random field $\vec{\mathcal{G}}(t, \theta, \varphi)$ describing the irregularities on the source surface.

The random field in the heliosphere

Given the law of the field lines $\varphi(r)$, one can transport $\vec{\mathcal{G}}$ into the inner regions of the heliosphere.

$$\vec{\mathcal{G}}_{\mathsf{H}}(t, r, \theta, \varphi) = \vec{\mathcal{G}}(t - \Delta t, \theta, \varphi(r_{\mathsf{s}}) - \Omega \Delta t)$$

The random components of the magnetic field

Isotropic field

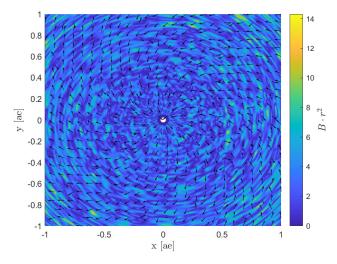
$$\vec{B}_{iso} = \frac{\alpha}{r}\vec{G}_{H}$$

A model for the magnetic field in the inner heliosphere

The random components of the magnetic field

Isotropic field

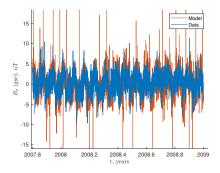
$$\vec{B}_{iso} = \frac{lpha}{r} \vec{G}_{H}$$

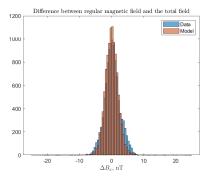

Anisotropic field

$$\vec{B}_{\rm aniso} = \beta \frac{\vec{B}_{\rm reg} \cdot \vec{G}_{\rm H}}{B_{\rm reg}} \vec{B}_{\rm reg}$$

N. Galikyan (NRNU MEPHI)

A model for the magnetic field in the inner heliosphere

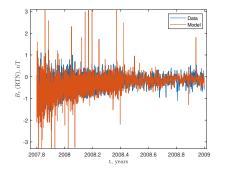

The total field


The total field at z = 0 slice.

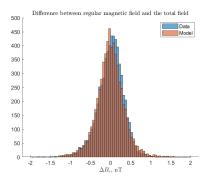
-

Analysis: ACE

Comparing the model and observed field by ACE spaccarft



The random field histogram


ъ.

э

Analysis: Ulysses

Comparing the model and observed field by Ulysses spacecraft

The random field histogram

-

Future work

• Compare the model with other spacecraft, such as Parker Solar Probe, Voyager, and others.

-

Future work

- Compare the model with other spacecraft, such as Parker Solar Probe, Voyager, and others.
- The power spectrum analysis of the obtained model

Thank you!

A model for the magnetic field in the inner heliosphere

三日 のへの

→