
https://doi.org/10.1140/epjp/s13360-023-04528-7

Neural Network Analysis of S-Star Dynamics:
Implications for Modified Gravity

N. Galikyan1,2

1 National Research Nuclear University MEPhI
2 A.Alikhanyan National Laboratory

N. Galikyan (NRNU MEPHI) Neural Network Analysis of S-Star Dynamics 1 / 12

https://doi.org/10.1140/epjp/s13360-023-04528-7


https://doi.org/10.1140/epjp/s13360-023-04528-7

Aim of the research

Analyse the dynamics of S-stars, which provide a natural laboratory for
testing different gravity theories, using neural networks.

Show that via neural networks, namely physics informed neural
networks (PINN), one can obtain the orbital parameters of the stars
and make constrains on different gravity theories, e.g. Λ-gravity.
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Λ-gravity

Newton’s shell theorem
a The gravitational field of a sphere acting on external objects can be

considered as though all of it mass is concentrated at a point at its
center

b Force-free field inside a shell

V (r) = −GM

r

Generalized shell theorem (V.G. Gurzadyan (1985))
The most generalized function satisfying shell theorem (a) but not (b), lets
us introduce the cosmological constant Λ into the Newtonian gravity

V (r) = −GM

r
− Λc2r2
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S-stars and S-2 star precession

The coordinates of the considered stars: points
indicate the observed data and dashed lines are
the ellipses obtained from the orbital parameters
of the Keplerian fit by S. Gillessen et al. (2017)

Statistical analysis of S2-star data within
the first-order PPN by the GRAVITY
Collaboration (R. Abuter et al. (2020)),
reports a deviation from Schwarzschild’s
precession 𝛿𝜙SP by a magnitude of
fSP = 1.10 ± 0.19

𝛿𝜙SP = 3
rg

a(1 − e2)
𝜋

Taking into account the Λ-term to the
precession, we obtain an additional term
𝛿𝜙Λ to the total observed precession
𝛿𝜙GRAV , which can be used to compensate
the observed fSP , i.e. 𝛿𝜙GRAV = 𝛿𝜙SP + 𝛿𝜙Λ

𝛿𝜙Λ =
2a3(1 − e2)

1
2 𝜋

rg
Λ
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Introduction to PINN

Let the state of a system is governed by the following equation

F (x , y , y ′, . . . , y (n)) = 0

Then the physical loss is given by the following loss function:

Lphys(f (x), x) = F 2
(︁
x , f (x), f ′(x), f ′′(x), . . . , f (n)(x)

)︁
.

To calculate the total loss value one should use the actual data
{(yi , xi )}Ni=1 and sample {(x̂i )}

Np

i=1 points from a larger data domain. Then
the loss function may be calculated:

ℒ(f (·), y , x , x̂) = 1
N

N∑︁
i=1

Lreg (yi , f (xi )) +
𝛼

Np

Np∑︁
i=1

Lphys(f (x̂i ), x̂i ).

where 𝛼 is a given training step-dependent regularization parameter.
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Physical model

As for physical model to train the PINN we used the Schwarzchild metric,
written in the form with relativistic anomaly 𝜒, which allows to explicitly
see the GR contribution to the precession

u =
𝜇

M
(1 + e cos𝜒)

(︂
d𝜒

d𝜙

)︂2

= 1 − 2𝜇(3 + e cos𝜒)

d2𝜒

d𝜙2 = 𝜇e sin𝜒

where (r , 𝜙) are polar coordinates of the star, u = r−1, and 𝜇 = M
p .
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Training schemes

(a) Individual training: Networks are trained
separately for each star. They do not have

any common parameters.

(b) Parallel training: Networks are trained
parallelly, so they have common parameters

like the central mass.

(c) NN block: A single network which is used to train on a single star data. These blocks are used in
both individual and parallel training cases.
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Metrics and parallel training results 1

ℳmodel-data = E
[︂
1 − |uModel − uStar|

uStar

]︂
,

ℳdata-physics = E
[︂
1 −

|uPhys − uStar|
uStar

]︂
,

ℳmodel-physics = E

[︃
1 −

|uModel − uPhys|
1
2(uModel + uPhys)

]︃
,

Star Name e ê p [Au] p̂ [Au] ℳmodel-data ℳdata-physics ℳmodel-physics
S2 0.884 0.884 228 223 0.9755 0.9768 0.9789
S13 0.425 0.418 1796 1706 0.9844 0.9829 0.9974
S31 0.550 0.552 2601 2675 0.9803 0.9826 0.9835
S54 0.893 1.001 2017 4.787 0.9660 < 0 < 0

Table: Results for GR case: (e,p) orbital parameters from S. Gillessen et al. (2017), (ê,p̂) the
network prediction.
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Parallel training results 2

On the above figure, the predicted trajectories are shown in the Cartesian coordinates
(x [Au],y [Au]), where (0, 0) is the central mass. On the bottom figure, the models’ regression

results are shown.
N. Galikyan (NRNU MEPHI) Neural Network Analysis of S-Star Dynamics 9 / 12

https://doi.org/10.1140/epjp/s13360-023-04528-7


https://doi.org/10.1140/epjp/s13360-023-04528-7

Individual training on S2

The S2 star trajectory in (x [Au],y [Au]) coordinates.

ê = 0.88512 ± 0.00001, p̂ = 219.2 ± 0.2 [Au], M̂ = 0.04 [Au],

ℳmodel-data = 0.9865, ℳdata-phyics = 0.9881, ℳmodel-physics = 0.9977.

It is important to note that, after a certain point during training, the value of M̂ was
fixed to be equal 0.04 [au]. Although the model was able to reach the given value and
“understand” the physical meaning of M̂, after that point its value was not stable due to
the quality of the data.
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Final results

During training, we calculate the two values of the precession rate:

𝛿𝜙Reg = 𝜙
(︁
min

1
û
)︁
− 𝜙

(︁
min

0
û
)︁
− 2𝜋, Precession rate of regression part û(𝜙).

𝛿𝜙Phys = 3
r̂g
p̂
𝜋, Precession rate of physical part.

Taking the moving average for every 500 epochs we obtain the following results

𝛿𝜙Reg = 11.84′; 𝜎Reg = 0.03′

𝛿𝜙Phys = 11.82′; 𝜎Phys = 0.02′

Using the equations Λ-term precession and the total precession, also taking
𝛿𝜙Reg(+3𝜎Reg) as the total precession rate and 𝛿𝜙Phys(−3𝜎Phys) as the
Schwarzschild precession rate, we obtain for the Λ the following upper constraint

Λ ≤ 5.8 × 10−38 [m]−2.
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Conclusion

The neural network was able to “see” the Schwarzschild precession for
S2 star, which made it possible to find the precession rate for both,
based on the regression part and the physical part of the network.

The regressed part is more “flexible” and is directly related to the
observational data, so the difference in the values of the precession
rates can be attributed to an additional precession that occurs due to
terms not entered in the physical model, which is Λ-term.
Our analysis reveals the efficiency of the neural networks in the study
of the S-star dynamics and that stronger constraints on GR and gravity
modifications can be expected from forthcoming observational data.
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Thank you!
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