Developing tools for high-accuracy \textit{ab initio} relativistic modeling of excited states and spectra of actinide molecules and impurity ions

A. V. Oleynichenko
A. Zaitsevskii, L. V. Skripnikov, Yu. V. Lomachuk,
N. S. Mosyagin, E. Eliav, A. V. Titov

NRC “Kurchatov Institute” – PNPI, Quantum physics and chemistry department

oleynichenko_av@pnpi.nrcki.ru
http://qchem.pnpi.spb.ru

The XXVII International Scientific Conference of Young Scientists and Specialists (AYSS-2023)
JINR, Dubna, 31st October, 2023
Introduction: the goals of relativistic quantum chemistry

- chemistry and spectroscopy of actinides and superheavy elements
- active laser media; sources of light; chromophores, luminophores
- searches for \mathcal{P},\mathcal{T}-odd fundamental interactions (physics beyond the Standard model)
- thermodynamics, physical and chemical properties of actinide compounds
- fine structure effects in spectra of light elements; spin-forbidden transitions
- the Periodic table for the most heavy chemical elements
- optical and magnetic properties of f-element compounds
- laser cooling and assembly of cold molecules
- ...

a clear understanding of the experiment is impossible without a theoretical model!

but: models for d- and f-elements have to be very complicated...
Electron correlation: coupled cluster theory

▶ Wave function:

\[\psi_n = \{\exp(T)\} \tilde{\psi}_n \]

\[T = \sum_{pq...rs...} t_{pq...rs...} \{a^\dagger_p a^\dagger_q \ldots a_s a_r\} \]

- \(T \) – cluster operator
- \(t_{pq...rs...} \) – cluster amplitudes
- \(a^\dagger_p, a_q \) – creation and annihilation operators

▶ The most effective account for electron correlation

▶ Computational complexity:

- time – \(\min O(N^6) \)
- memory – \(\min O(N^4) \)

▶ Relativistic calculations = complex arithmetic + low symmetry!
Finite-order method to calculate property operator matrix elements

- General idea:

\[\psi_n = \{\exp(T)\} \tilde{\psi}_n \approx \left(1 + T + \frac{T^2}{2}\right)\tilde{\psi}_n \]

- 2nd order approximation to an effective property operator \(\tilde{O} \):

\[\tilde{O} \approx \left(O + T^\dagger O + OT + \frac{(T^\dagger)^2}{2}O + T^\dagger OT + O \frac{T^2}{2} - (T^\dagger T)_{cl} O \right)_{cl, conn} \]

- Disconnected diagrams cancel each other

- Line intensities in absorption and emission spectra \(\sim |\langle \psi_n |\hat{d}|\psi_m \rangle|^2 \)

- Error \(\leq 10\% \) in calculated matrix elements

- The analogous approach was previously used in atomic calculations

Implementation of the relativistic coupled cluster theory: the EXP-T program package

The new program package EXP-T for coupled cluster calculations was developed at NRC “Kurchatov Institute” – PNPI

- electronic structure of atoms, molecules and defects in crystals
- Kramers-unrestricted relativistic coupled cluster theory
- open shells: Fock-space multireference coupled cluster
- CCSD, CCSD(T), CCSDT-1,2,3, CCSDT models
- analytic density matrices for single-reference CCSD and CCSD(T)
- molecular integrals are imported from the DIRAC package
 relativistic Hamiltonians: Schrödinger, Dirac-Coulomb(-Gaunt) DC(G), (generalized) pseudopotentials
- property calculations, e.g. transition dipole moments → intensities in spectra
- fast and flexible implementation of new models

The EXP-T program package

The EXP-T program package is designed for high-precision modeling of molecular electronic structure using the relativistic Fock space multireference coupled cluster method (F5-RCC). EXP-T is written from scratch in the C99 programming language and is currently focused on Unix-like systems.

Webpage of the EXP-T project:
http://qchem.pnpi.spb.ru/expert

https://github.com/aoleynichenko/EXP-T
Pseudopotential operator as a part of relativistic Hamiltonian

- core electronic shells are replaced with the some potential \hat{U} acting on valence electrons (the Pauli principle is accounted for)
- the valence electrons are described by the Schrödinger equation:

$$\hat{H}^{\text{RPP}} = \sum_i \left(-\frac{\Delta_i}{2} + \sum_\alpha \left(-\frac{z_\alpha}{r_{\alpha i}} + \hat{U}_\alpha(i) \right) \right) + \sum_{i>j} \frac{1}{r_{ij}}$$

i, j – sum over electrons
α – sum over nuclei
z_α – effective charge of the atomic core α, $z_\alpha = Z_\alpha - N_{\text{inner core el-s}}$

- potential \hat{U} can effectively account for:
 - scalar-relativistic effects
 - spin-orbit interaction
 - Breit interaction of electrons
 - finite nuclear charge distribution (the Fermi model)
 - QED contributions (electron self-energy + vacuum polarization)

- The most accurate version of the method – generalized relativistic pseudopotential (GRPP)

Accuracy of the generalized relativistic pseudopotential (GRPP) model
Vertical excitation energies of the UO$_2$ molecule; compared to the 4-component Dirac-Coulomb-Gaunt calculations

FS-RCCSD calculation: UO$_2^{2+}$ (0h0p) \rightarrow UO$_2^+$ (0h1p) \rightarrow UO$_2$ (0h2p)
Main model space comprised the \approx 7s5f, 5f2, 6d5f, 7p5f configurations of U
For details, see: A. V. Oleynichenko et al, Symmetry, 15, 197 (2023)
The `libgrpp` library for evaluation of molecular integrals of the GRPP operator over Gaussian basis functions

<table>
<thead>
<tr>
<th>Library</th>
<th>Year</th>
<th>scal.-rel.</th>
<th>spin-orbit</th>
<th>outercore</th>
<th>open source</th>
<th>written in</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARGOS</td>
<td>1981</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>Fortran</td>
</tr>
<tr>
<td>MOLGEP</td>
<td>1991</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>Fortran</td>
</tr>
<tr>
<td>Turbomole</td>
<td>2005</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>Fortran</td>
</tr>
<tr>
<td>libECP</td>
<td>2015</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>C</td>
</tr>
<tr>
<td>libecpint</td>
<td>2021</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>C++</td>
</tr>
<tr>
<td><code>libgrpp</code></td>
<td>2022</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>C</td>
</tr>
</tbody>
</table>

- `libgrpp` is written from scratch in C99
- no restrictions on maximum angular momenta of GRPP and basis functions
- analytic gradients of GRPP integrals
- `libgrpp` is available in the home version of DIRAC!
The libgrpp library for evaluation of molecular integrals of the GRPP operator over Gaussian basis functions

https://github.com/aoleynichenko/libgrpp
Library of relativistic pseudopotentials – by N. S. Mosyagin

http://qchem.pnpi.spb.ru/recp

<table>
<thead>
<tr>
<th>Group</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Li</td>
<td>Be</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Na</td>
<td>Mg</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>K</td>
<td>Ca</td>
<td>Sc</td>
<td>Ti</td>
<td>V</td>
<td>Cr</td>
<td>Mn</td>
<td>Fe</td>
<td>Co</td>
<td>Ni</td>
<td>Cu</td>
<td>Zn</td>
<td>Ga</td>
<td>Ge</td>
<td>As</td>
<td>Se</td>
<td>Br</td>
<td>Kr</td>
</tr>
<tr>
<td>5</td>
<td>Rb</td>
<td>Sr</td>
<td>Y</td>
<td>Zr</td>
<td>Nb</td>
<td>Mo</td>
<td>Tc</td>
<td>Ru</td>
<td>Rh</td>
<td>Pd</td>
<td>Ag</td>
<td>Cd</td>
<td>In</td>
<td>Sn</td>
<td>Sb</td>
<td>Te</td>
<td>I</td>
<td>Xe</td>
</tr>
<tr>
<td>6</td>
<td>Cs</td>
<td>Ba</td>
<td></td>
<td>Hf</td>
<td>Ta</td>
<td>W</td>
<td>Re</td>
<td>Os</td>
<td>Ir</td>
<td>Pt</td>
<td>Au</td>
<td>Hg</td>
<td>Tl</td>
<td>Pb</td>
<td>Bi</td>
<td>Po</td>
<td>At</td>
<td>Rn</td>
</tr>
<tr>
<td>7</td>
<td>Fr</td>
<td>Ra</td>
<td></td>
<td>104 Rf</td>
<td>105 Db</td>
<td>106 Sg</td>
<td>107 Bh</td>
<td>108 Hs</td>
<td>109 Mt</td>
<td>110 Ds</td>
<td>111 Rg</td>
<td>112 Cn</td>
<td>113 Nh</td>
<td>114 Fl</td>
<td>115 Mc</td>
<td>116 Lv</td>
<td>117 Ts</td>
<td>118 Og</td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

* Lanthanides

| | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu |
|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 97 | | | | | | | | | | | | | | |

** Actinides

<table>
<thead>
<tr>
<th></th>
<th>Ac</th>
<th>Th</th>
<th>Pa</th>
<th>U</th>
<th>Np</th>
<th>Pu</th>
<th>Am</th>
<th>Cm</th>
<th>Bk</th>
<th>Cf</th>
<th>Es</th>
<th>Fm</th>
<th>Md</th>
<th>No</th>
<th>Lr</th>
</tr>
</thead>
<tbody>
<tr>
<td>98</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>121</th>
<th>122</th>
<th>123</th>
</tr>
</thead>
</table>
Pilot applications
The ThO molecule as a pilot application

- one of the most well-studied actinide molecules:
 - experimental searches of the electron electric dipole moment
 - term energies T_e and equilibrium distances r_e
 - permanent dipole moments in ground and excited electronic states
 - radiative lifetimes of excited electronic states

- previous works: Dirac-Coulomb Hamiltonian
 → the accuracy was acceptable for several low-lying states only

- our goal: all electronic states $< 20000 \text{ cm}^{-1}$
Electronic states of the diatomic ThO molecule

Potential energy curves and equilibrium distances r_e

- Relativistic Hamiltonian: GRPP accounting for Breit and QED
- Ground state calculations: single-reference coupled cluster CCSD(T)
- Excited states: Fock space coupled cluster FS-CCSD

<table>
<thead>
<tr>
<th>State</th>
<th>RPP/IH-IMMS T_e, cm$^{-1}$</th>
<th>DC/IH-CMMS* T_e, cm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(i)</td>
<td>104</td>
<td>700</td>
</tr>
<tr>
<td>Q(i)</td>
<td>97</td>
<td>738</td>
</tr>
<tr>
<td>A(ii)</td>
<td>242</td>
<td>691</td>
</tr>
<tr>
<td>B(ii)</td>
<td>302</td>
<td>927</td>
</tr>
<tr>
<td>C(iii)</td>
<td>424</td>
<td>1698</td>
</tr>
<tr>
<td>D(iv)</td>
<td>440</td>
<td>1698</td>
</tr>
<tr>
<td>E(iii)</td>
<td>312</td>
<td>960</td>
</tr>
<tr>
<td>G(iv)</td>
<td>165</td>
<td>-</td>
</tr>
<tr>
<td>F(iv)</td>
<td>431</td>
<td>-</td>
</tr>
<tr>
<td>I(vi)</td>
<td>367</td>
<td>-</td>
</tr>
</tbody>
</table>

Electronic states of the diatomic ThO molecule

Radiative lifetimes of excited states

Exptl. FS-RCCSD/RKR* GRPP FS-RCCSD GRPP

$H \rightarrow X$ 4.2 ± 0.5 msa 3.82 ms 3.57 ms

$Q \rightarrow X$ > 62 msb 177 ms 182 ms

$C \rightarrow ...$ > 480 nsc 468 \pm 30 nsd 400 ns 364 ns

$C \rightarrow Q$ 5.4 ± 1.3 msb 5.49 μs 4.87 μs

* FS-RCCSD/RKR – potential energy curve for the ground state was constructed using the Rydberg-Klein-Rees method based on experimental data

Ground electronic states of the UO$_2$ molecule and its ion UO$_2^+$; ionization potential calculation

<table>
<thead>
<tr>
<th></th>
<th>CASPT2a</th>
<th>FS-CCSD</th>
<th>SR-CCSD</th>
<th>SR-CCSD(T)</th>
<th>Exptl.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP, eV</td>
<td>6.17</td>
<td>5.799</td>
<td>5.947</td>
<td>6.062</td>
<td>6.128b</td>
</tr>
<tr>
<td>r_e(UO$_2^+$), Å</td>
<td>1.771</td>
<td>1.731</td>
<td>1.737</td>
<td>1.753</td>
<td>1.758c</td>
</tr>
<tr>
<td>r_e(UO$_2$), Å</td>
<td>1.806</td>
<td>1.760</td>
<td>1.774</td>
<td>1.790</td>
<td>1.790c</td>
</tr>
</tbody>
</table>

AcOH$^+$ – the first prediction of a laser-coolable polyatomic ion

A promising system for a new generation of experiments searching for P, T-odd effects ⇒ searches for the New physics beyond the Standard model

Spectroscopy of the AcF molecule: relativistic modeling makes spectroscopic experiment possible

- a promising object for the searches of the P,T-odd nuclear Schiff moment on ^{225}Ac, ^{227}Ac

 L. V. Skripnikov et al, *PCCP* 22, 18374 (2020)

- Low-lying electronic states: 2 electrons over the closed-shell vacuum state (AcF$^{2+}$)
- ~ 80 electronic states < 43000 cm$^{-1}$
- The most intense transitions were predicted
- The (8)1 state was experimentally observed at CRIS/ISOLDE (CERN)

Localized excitations on f-element ions Ce$^{3+}$, Th$^{3+}$ in xenotime YPO$_4$ crystals

- tetragonal crystal system, $I4_1/amd$
- local symmetry of the Y$^{3+}$ site: D_{2d}
- natural xenotime contains Th and U impurities
- radiation resistant, no metamictization
- very wide bandgap (> 8.6 eV)

- YPO$_4$ doped with lanthanide ions:
 - laser active media, scintillators, luminophores ...
 - large amount of experimental data:
 YPO$_4$:Ce$^{3+}$, YPO$_4$:Pr$^{3+}$, YPO$_4$:Nd$^{3+}$, YPO$_4$:Yb$^{3+}$, ...
 - energy and charge transfer processes between lanthanide sites

- YPO$_4$ doped with actinide ions:
 - immobilization of highly radioactive waste
 - nuclear clock on the isomeric transition in 229Th

Minimal cluster model of an impurity center

- Periodic model (crystal)
 - DFT/PBE0
 - Optimize geometry
 - Optimize compound-tunable PPs

- Extended cluster model with impurity ion
 - DFT/PBE0
 - Optimize CTEP charges
 - Insert impurity + optimize geometry
 - Local vibrational modes

- Minimal cluster model with impurity ion
 - Reoptimize CTEP charges (MP2)
 - Spin-orbit is included
 - Excitation energies (rel FS CCSD)
 - Radiative lifetimes

CTEP = Compound-Tunable Effective Potential
Excitation energies and radiative lifetimes of excited states

- errors of order $0.2 - 0.3$ eV
- ground state of Th$^{3+}$ in crystal – $6d^1$
- minimal cluster model calculations: FS RCCSD
- correction for the cluster model size: TD-DFT
- the interplay of the crystal field and spin-orbit interaction

1 Y. V. Lomachuk, D. A. Maltsev, N. S. Mosyagin, L. V. Skripnikov, R. V. Bogdanov, A. V. Titov, PCCP, 22, 17922 (2020)
Bibliography: generalized relativistic pseudopotentials

 Generalized relativistic effective core potential: Gaussian expansions of potentials and pseudospinors for atoms Hg through Rn

 Generalized relativistic effective core potential: Theoretical grounds

 Accounting for the Breit interaction in relativistic effective core potential calculations of actinides

 Generalized relativistic effective core potentials for superheavy elements

 Generalized relativistic small-core pseudopotentials accounting for quantum electrodynamic effects: Construction and pilot applications

 LIBGRPP: a library for the evaluation of molecular integrals of the generalized relativistic pseudopotential operator over Gaussian functions
Bibliography: relativistic coupled cluster theory

 Padé extrapolated effective Hamiltonians in the Fock space relativistic coupled cluster method.

 Generalized relativistic small-core pseudopotentials accounting for quantum electrodynamic effects: Construction and pilot applications

 Electronic transition dipole moments in relativistic coupled-cluster theory: the finite-field method.

 Relativistic fock space coupled cluster method for many-electron systems: non-perturbative account for connected triple excitations.

 Relativistic Fock space coupled-cluster study of bismuth electronic structure to extract the Bi nuclear quadrupole moment.

 Relativistic Fock-space coupled cluster method: Theory and recent applications
thanks to

M. G. Kozlov
D. A. Maltsev
A. N. Petrov

M. Athanasakis-Kaklamanakis
M. Au
A. Borschevsky
V. V. Flambaum
G. Neyens

Questions?
Appendix
How to assess an accuracy of GRPP?

Problem: taking into account QED and Breit in 4c calculations is extremely difficult

Solution: to construct a special GRPP for testing only (N. S. Mosyagin)

- atomic Dirac-Hartree-Fock-Gaunt calculation (4c)
- Gaussian nuclear charge distribution (instead of Fermi)
- retardation
- QED contributions

Reference 4c calculation: Dirac-Coulomb-Gaunt (DCG-x2cmmf)

Correlation calculations:

- relativistic Fock space coupled cluster method (FS-RCCSD)
- intermediate Hamiltonian for incomplete model spaces (IH-IMMS)

- the EXP-T program package

http://qchem.pnpi.spb.ru/expt
Example: uranium atom in the SCF approximation

Consider the 64e small core pseudopotential for the U atom:

- outercore shells: 6\(sp\), 5\(spd\), 4\(spdf\)
- valence shells: 7\(sp\), 6\(d\), 5\(f\)

<table>
<thead>
<tr>
<th>Excitation energies, cm(^{-1})</th>
<th>5(f^36d^17s^2) →</th>
<th>Absolute errors, cm(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>no QED</td>
</tr>
<tr>
<td>5(f^37s^27p^1)</td>
<td>7589</td>
<td>-72</td>
</tr>
<tr>
<td>5(f^36d^27s^1)</td>
<td>12990</td>
<td>133</td>
</tr>
<tr>
<td>5(f^36d^17s^17p^1)</td>
<td>17109</td>
<td>90</td>
</tr>
<tr>
<td>5(f^26d^27s^2)</td>
<td>4809</td>
<td>-169</td>
</tr>
<tr>
<td>5(f^26d^27s^17p^1)</td>
<td>23920</td>
<td>-64</td>
</tr>
<tr>
<td>5(f^47s^2)</td>
<td>15634</td>
<td>147</td>
</tr>
<tr>
<td>5(f^47s^17p^1)</td>
<td>30491</td>
<td>221</td>
</tr>
<tr>
<td>5(f^16d^37s^2)</td>
<td>31804</td>
<td>-354</td>
</tr>
<tr>
<td>5(f^16d^47s^1)</td>
<td>38957</td>
<td>-176</td>
</tr>
</tbody>
</table>

Excitation energies were derived from all-electron numerical SCF calculations for the states averaged over nonrelativistic configurations.

Data by N. S. Mosyagin
Vertical excitation energies of ThO

FS-RCCSD calculation: ThO$^{2+}$ (0h0p) → ThO$^+$ (0h1p) → ThO (0h2p)

Active space: 24 lowest virtual Kramers pairs of ThO$^{2+}$
Main model space: CAS 2e / 12 spinors, \approx 7s + 6d Th
Basis sets: [19s17p15d15f5g4h3i] (Th), aug-cc-pVQZ-DK (O)

![Graph](image_url)

deviation from Dirac-Coulomb-Gaunt, cm$^{-1}$
excitation energy, cm$^{-1}$

contribution to excitation energy, cm$^{-1}$

QED + retardation
Gaunt
Summary

Deviation from the 4-component Dirac-Coulomb-Gaunt model:

<table>
<thead>
<tr>
<th></th>
<th>GRPP</th>
<th>semilocal</th>
<th>DC</th>
<th>Ret.+QED</th>
</tr>
</thead>
<tbody>
<tr>
<td>ThO</td>
<td>max</td>
<td>46</td>
<td>335</td>
<td>802</td>
</tr>
<tr>
<td></td>
<td>abs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rms</td>
<td>29</td>
<td>181</td>
<td>341</td>
<td>151</td>
</tr>
<tr>
<td>UO₂</td>
<td>max</td>
<td>110</td>
<td>345</td>
<td>767</td>
</tr>
<tr>
<td></td>
<td>abs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rms</td>
<td>51</td>
<td>128</td>
<td>316</td>
<td>112</td>
</tr>
</tbody>
</table>

- The error of GRPP is balanced for all electronic states.
- The Dirac-Coulomb Hamiltonian is inherently less accurate than even a semi-local potential.
- The contributions of retardation and QED effects are greater than the error of GRPP.
- Our future: pseudopotentials accounting for QED.

GRPP seems to be the most precise Hamiltonian for real-life molecular calculations?