Theoretical study of isotope shifts.

Sergey Prosnyak, Gleb Penyazkov, Leonid Skripnikov

NRC "Kurchatov Institute" - PNPI Quantum Chemistry Laboratory

St Petersburg University Quantum Mechanics Division

Comparison of experimental and calculated changes in mean-squared charge radii in the lead region

lsotope shift

Slide from presentation of V. V. Flambaum, A. J. Geddes and A. V. Viatkina

Prosnyak S.D.	(PNPI, SPbU
---------------	-------------

イロト 不得下 イヨト イヨト 3/16 2023

IRIS (PNPI)

ISOLDE (CERN)

$$\delta
u^{M',M} = (k_{NMS} + k_{SMS}) \left(\frac{1}{M'} - \frac{1}{M} \right) + F \delta \langle r^2 \rangle.$$

 $k_{NMS} = \nu_{exp}^{transition}/1822.888 - normal mass shift$

 k_{SMS} – specific mass shift

 $F = d
u/d\left\langle r^2
ight
angle$ – field shift

Mass shift operator

$$\begin{split} H_{NMS} &= \frac{1}{2M} \sum_{i} (\vec{p}_{i}^{2} - \frac{\alpha Z}{r_{i}} \left[\vec{\alpha}_{i} + \frac{(\vec{\alpha}_{i} \cdot \vec{r}_{i})\vec{r}_{i}}{r_{i}^{2}} \right] \cdot \vec{p}_{i}), \\ H_{SMS} &= \frac{1}{2M} \sum_{i \neq k} (\vec{p}_{i} \cdot \vec{p}_{k} - \frac{\alpha Z}{r_{i}} \left[\vec{\alpha}_{i} + \frac{(\vec{\alpha}_{i} \cdot \vec{r}_{i})\vec{r}_{i}}{r_{i}^{2}} \right] \cdot \vec{p}_{k}), \end{split}$$

V. M. Shabaev, Theor. Math. Phys. 63, 588 (1985).

V. M. Shabaev, Sov. J. Nucl. Phys. 47, 69 (1988).

C. W. P. Palmer, J. Phys. B: At. Mol. Phys 20, 5987 (1987).

э

イロト イボト イヨト イヨト

Calculated values of the normal, k_{NMS} , specific, k_{SMS} , total, k_{Total} , mass shift constants (in GHz·a.m.u.) and field shift constants F (in GHz/fm²) for transition $6s_{1/2} - 6p_{1/2}$ of Au atom

	k _{NMS}	k _{SMS}	k _{Total}	F
-CCSD(T)	723	221	944	-41.9
-CCSDT - 19e-CCSD(T) -125	-37	-161	+1.0
-CCSDT(Q) - 19e-CCSE	от -4	-31	-35	+0.5
sis set correction	-	-28	-28	_
unt	+5	-22	-17	+0.3
tal	600(40)	103(93)	703(101)	-40.1(11)
←CCSD(T) ←CCSDT - 19e-CCSD(T ←CCSDT(Q) - 19e-CCSE sis set correction unt tal	723) -125 DT -4 -5 600(40)	221 -37 -31 -28 -22 103(93)	944 -161 -35 -28 -17 703(101)	-4 + + + -40.1(;

Paper accepted by Phys. Rev. Lett.!

・ロト ・ 同ト ・ ヨト ・ ヨト

Comparison with previous results

Field shift constants F (in GHz/fm²) for transition $6s_{1/2} - 6p_{1/2}$ of Au

This work	-40.1(11)
SCDF [1]	-41.5
MCDF [1]	-39.6

Normal, k_{NMS} , specific, k_{SMS} and total, k_{Total} , mass shift constants (in GHz·a.m.u.) for transition $6s_{1/2} - 6p_{1/2}$ of Au

This work	600(40)	103(93)	703(101)
Exp	615	-	-
SE [2]	-	-	799(553)

 Rosén, A., Fricke, B., & Torbohm, G. (1984). Volume isotope shifts in low lying transitions of Au I. Zeitschrift für Physik A Atoms and Nuclei, 316(2), 157-16.
 Angeli, I., & Marinova, K. P. (2013). Table of experimental nuclear ground state charge radii: An update. Atomic Data and Nuclear Data Tables, 99(1), 69-95.

Prosnyak S.D. (PNPI, SPbU)

Calculated values of the normal, k_{NMS} , specific, k_{SMS} , total, k_{Total} , mass shift constants (in GHz·a.m.u.) and field shift constants F (in MHz/fm²) for transition 3s²3p ${}^{2}P_{1/2} \rightarrow 3s^{2}4s \, {}^{2}S_{1/2}$ of Al atom

k _{NMS}	k _{SMS}	k _{Total}	F
-415.45	653.41	237.96	76.95
+0.01	-0.10	-0.08	-0.01
-0.35	+0.04	-0.31	+0.03
-0.40	+0.48	+0.08	+0.02
+0.63	-0.88	-0.25	-0.10
_	-	_	+0.04
-415.55	652.94	237.39	76.92
	k _{NMS} -415.45 +0.01 -0.35 -0.40 +0.63 - -415.55	$\begin{array}{ccc} k_{NMS} & k_{SMS} \\ -415.45 & 653.41 \\ \\ +0.01 & -0.10 \\ -0.35 & +0.04 \\ -0.40 & +0.48 \\ +0.63 & -0.88 \\ \\ - & - \\ -415.55 & 652.94 \end{array}$	$\begin{array}{c cccc} k_{NMS} & k_{SMS} & k_{Total} \\ \hline +415.45 & 653.41 & 237.96 \\ \\ +0.01 & -0.10 & -0.08 \\ -0.35 & +0.04 & -0.31 \\ -0.40 & +0.48 & +0.08 \\ +0.63 & -0.88 & -0.25 \\ \\ - & - & - \\ \hline -415.55 & 652.94 & 237.39 \end{array}$

Calculated values of the normal, k_{NMS} , specific, k_{SMS} , total, k_{Total} , mass shift constants (in GHz·a.m.u.) and field shift constants F (in MHz/fm²) for transition 3s²3p ${}^{2}P_{3/2} \rightarrow 3s^{2}4s \,{}^{2}S_{1/2}$ of Al atom

	k _{NMS}	k _{SMS}	k _{Total}	F
13e-CCSDT	-414.38	654.47	240.10	76.85
CCSDT(Q) - CCSDT	-0.01	-0.57	-0.58	-0.01
Basis set correction, +s, p, d	-0.35	+0.04	-0.32	+0.02
Basis set correction, +hm	-0.41	+0.48	+0.07	+0.02
Gaunt	+0.02	-0.48	-0.46	-0.08
Nuclear charge model	-	_	-	+0.04
Total	-415.13	653.94	238.81	76.83
Total	-415.13	653.94	238.81	+0.04 76.83

Calculated values of mass shift constants (in GHz·a.m.u.) and field shift constants F (in MHz/fm²) of Al atom

	K _{Total}	F
$3s^23p~^2P_{1/2} ightarrow 3s^24s~^2S_{1/2}$		
Our results	237(1.3)	76.92(12)
Ref. [3]	240(5)	76.5(20)
$3s^23p\ ^2P_{3/2} \rightarrow 3s^24s\ ^2S_{1/2}$		
Our results	239(1)	76.83(11)
Ref. [3]	243(4)	76.2(22)

[3] Filippin, L., Beerwerth, R., Ekman, J., Fritzsche, S., Godefroid, M., Jonsson, P. (2016). Multiconfiguration calculations of electronic isotope shift factors in Al I. Physical Review A, 94(6), 062508.

Thank you for attention!

Image: A matrix

Image: A math a math

Tl isotopes radii

А	I.	$\delta \langle r^2 angle$, fm 2 [4, 5]	$\delta \langle r^2 angle$, fm 2
208g	5	0.183(13){13}	0.1919(130){38} ^a
207g	1/2	$0.1048(2)\{70\}$	$0.1100(2)\{22\}^{b}$
205g	1/2	0	0
204g	2	$-0.0635(71)\{40\}$	-0.0667(74){13} ^c
203g	1/2	$-0.10321(2){700}$	$-0.10840(3)\{220\}^d$
202g	2	$-0.1834(71)\{130\}$	$-0.1926(74){38}^{c}$
201g	1/2	$-0.2077(9)\{150\}$	-0.2182(9){43} ^e
200g	2	$-0.2979(71)\{210\}$	-0.3129(74){62} ^c
199g	1/2	$-0.3116(71)\{220\}$	-0.3275(74){65} ^c
198g	2	$-0.4035(71)\{290\}$	$-0.4239(74)\{84\}^{f}$
198m	7	$-0.3804(71)\{270\}$	-0.3998(74){80} ^g
197g	1/2	$-0.4119(71)\{290\}$	-0.4330(74){86} ^f
197m	9/2	$-0.272(26)\{19\}$	$-0.2871(270)\{75\}^{h}$
196g	2	-0.4795(5){340}	$-0.5036(5)\{100\}^{i}$
196m	7	-0.4544(6){320}	$-0.4773(6)\{95\}^{i}$

Tl isotopes radii

А	I.	$\delta \langle r^2 angle$, fm 2 [4, 5]	$\delta \langle r^2 angle$, fm 2
195g	1/2	-0.4820(71){340}	$-0.5068(75){100}^{j}$
195m	9/2	$-0.324(11){23}$	$-0.3419(120)\{90\}^{h}$
194g	2	$-0.5551(39){50}$	$-0.5831(5)\{120\}^{i}$
194m	7	$-0.5481(5){380}$	$-0.5759(5)\{110\}^{i}$
193g	1/2	$-0.5716(11){400}$	$-0.6007(12){120}^{e}$
193m	9/2	$-0.4111(10)\{290\}$	$-0.4329(11)\{87\}^e$
192g	2	$-0.6296(4){440}$	-0.6616(4){130} ⁱ
192m	7	$-0.6358(6){450}$	$-0.6681(6)\{130\}^i$
191g	1/2	$-0.6544(7)\{460\}$	$-0.6878(7)\{140\}^i$
191m	9/2	-0.4899(6){340}	$-0.5158(6)\{100\}^i$
190g	2	-0.7063(4){490}	-0.7424(4){150} ⁱ
190m	7	$-0.7223(5){510}$	$-0.7591(5)\{150\}^i$
189m	9/2	$-0.5543(41){390}$	$-0.5837(43)\{120\}^e$
188m	7	$-0.8134(5)\{570\}$	$-0.8549(5)\{170\}^i$
187m	9/2	$-0.616(31){43}$	$-0.650(32)\{17\}^{h}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Tl isotopes radii

А	I.	$\delta \langle r^2 angle$, fm² [4, 5]	$\delta \langle r^2 angle$, fm ²
186m1	7	$-0.9324(15){650}$	$-0.9799(15){200}^{k}$
186m2	10	$-0.719(23){50}$	$-0.758(24){20}^{h}$
185g	1/2	$-0.938(41)\{66\}$	$-0.987(43)\{25\}^{h}$
185m	9/2	$-0.731(29){51}$	$-0.770(30)\{20\}^{h}$
184m1	2	$-0.979(32){69}$	$-1.031(32)\{27\}^{\prime}$
184m2	7	$-0.976(24)\{68\}$	$-1.027(26){27}'$
184m3	10	$-0.777(20)\{54\}$	$-0.820(23)\{21\}'$
183g	1/2	$-1.033(15){72}$	$-1.086(17){28}'$
183m	9/2	$-0.775(15){54}$	$-0.818(17)\{22\}'$
182m1	4	$-1.120(18){78}$	$-1.179(19){30}'$
182m2	7	$-1.123(30){78}$	$-1.182(33){30}'$
181	1/2	$-1.174(16)\{82\}$	$-1.236(17){32}'$
180	4	$-1.254(22){88}$	$-1.319(24){34}'$
179	1/2	$-1.274(29)\{89\}$	$-1.340(31){35}'$

2023 15 / 16

[4] A. E. Barzakh et al. Changes in the mean square charge radii and magnetic moments of neutron deficient TI isotopes.

In: Phys. Rev. C 88 (2 Aug. 2013), p.024315.

doi: 10.1103/PhysRevC.88.024315.

url: https://link.aps.org/doi/10.1103/PhysRevC.88.024315

[5] A. E. Barzakh et al. Changes in mean squared charge radii and magnetic moments of 179-184Tl measured by in source laser spectroscopy. In: Phys. Rev. C 95 (1 Jan. 2017), p. 014324. doi: 10.1103/PhysRevC.95.014324. url: https://link.aps.org/doi/10.1103/PhysRevC.