Introduction Gluodynamics under rotation Scale anomaly and magnetic gluon condensate OCOC Conclusions

Negative moment of inertia and rotational instability of gluon plasma

D.A.Sychev in collaboration with V.V.Braguta, M.N.Chernodub, A.A.Roenko, I.E.Kudrov

BLTP JINR, MIPT

1 November 2023

Introd	uction
•000	

Scale anomaly and magnetic gluon condensate

Negative Barnett effect

Motivation

Introduction 0●00	Gluodynamics under rotation	Scale anomaly and magnetic gluon condensate	Negative Barnett effect 0	Conclusions
Dr. J. Iv.	1			

Rigidity condition

$$v = \Omega \times r \tag{1}$$

$$\Omega = \frac{1}{2} \nabla \times v = \text{const}$$
 (2)

Introduction 00●0	Gluodynamics under rotation	Scale anomaly and magnetic gluon condensate	Negative Barnett effect 0	Conclusions
D	10			

Rotating coordinates

$$t = t_{\mathsf{lab}}, \quad r = \eta_{\mathsf{ab}}, \quad z = z_{\mathsf{lab}}, \quad \varphi \sim (\varphi_{\mathsf{lab}} - \Omega t)$$
 (3)

$$g_{\mu\nu}^{(lab)} = \eta_{\mu\nu} = \text{diag}(1, -1, -1, -1)$$
 (4)

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} = (1 - r^{2}\Omega^{2})dt^{2} - 2r^{2}\Omega dtd\varphi - dr^{2} - r^{2}d\varphi^{2} - dz^{2}$$
(5)

$$g_{\mu\nu} = \begin{pmatrix} 1 - r^2 \Omega^2 & \Omega y & -\Omega x & 0\\ \Omega y & -1 & 0 & 0\\ -\Omega x & 0 & -1 & 0\\ 0 & 0 & 0 & -1 \end{pmatrix}$$
(6)

Introduction 000●	Gluodynamics under rotation	Scale anomaly and magnetic gluon condensate	Negative Barnett effect 0	Conclusions
N.4 .	C · ·			

Moment of inertia

$$E = E^{(lab)} - J\Omega \tag{7}$$

$$dE^{(lab)} = TdS + \Omega dJ$$
(8)

$$dE = TdS - Jd\Omega$$
(9)

$$F = E - TS \tag{10}$$

$$J = -\left(\frac{\partial F}{\partial \Omega}\right)_{T} \tag{11}$$

$$I = \frac{1}{\Omega} J \tag{12}$$

$$i_{2} = \frac{I}{VR_{\perp}^{2}}, \qquad R_{\perp} = \frac{L_{s}}{2}$$

$$K_{2} = -\frac{I}{F_{0}R_{\perp}^{2}}$$
(13)
(14)

5 / 16

Introduction OCO Scale anomaly and magnetic gluon condensate Negative Barnett effect Conclusions

Gluodynamics in rotating coordinates

$$S_G = \int d^4 x \, \sqrt{\det g_{\alpha\beta}} \, \frac{1}{2g_{\rm YM}^2} \, g^{\mu\nu} g^{\rho\sigma} \, {\rm tr} F_{\mu\rho} F_{\nu\sigma} \tag{15}$$

$$S_{G} = \frac{1}{g_{YM}^{2}} \int d^{4}x \operatorname{tr}[(1 - r^{2}\Omega^{2})F_{xy}F_{xy} + (1 - y^{2}\Omega^{2})F_{xz}F_{xz} + (1 - x^{2}\Omega^{2})F_{yz}F_{yz} + F_{x\tau}F_{x\tau} + F_{y\tau}F_{y\tau} + F_{y\tau}$$

$$+F_{z\tau}F_{z\tau}-2iy\Omega(F_{xy}F_{y\tau}+F_{xz}F_{z\tau})+2ix\Omega(F_{yx}F_{x\tau}+F_{yz}F_{z\tau})-2xy\Omega^2F_{xz}F_{zy}]$$
(16)

Simulations with a sign problem:

- Analytical continuation $\Omega_I = -i\Omega$
- Expansion coefficients at $\Omega=0$

Scale anomaly and magnetic gluon condensate

Negative Barnett effect

Conclusions

Temperature dependence of moment of inertia

Gluodynamics under rotation ○○●

icale anomaly and magnetic gluon condensate

Negative Barnett effect

Conclusions

Condition of thermodynamic stability

$$\delta E - T \delta S - \mathbf{\Omega} \delta \mathbf{J} > 0 \tag{17}$$

$$g^{(W),\mu\nu} = -\frac{\partial^2 f(T, \mathbf{\Omega})}{\partial X_{\mu} \partial X_{\nu}}, \qquad X_{\mu} = (T, \Omega_i)$$
(18)

$$C_J = T\left(\frac{\partial S}{\partial T}\right)_J > 0 \tag{19}$$

l > 0 (20)

Scale anomaly and magnetic gluon condensate $_{\odot OOOO}$

Negative Barnett effect

Conclusior

Decomposing moment of inertia

$$F = -T \ln \int DAe^{iS}$$
(21)

$$I^{\rm gl} = I^{\rm gl}_{\rm mech} + I^{\rm gl}_{\rm magn}$$
(22)

$$I_{\rm mech}^{\rm gl} = \frac{1}{T} \langle\!\langle \left(\boldsymbol{n} \cdot \boldsymbol{J}^{\rm gl}\right)^2 \rangle\!\rangle_T$$
(23)

$$J_{i}^{\rm gl} = \frac{1}{2} \int_{V} d^{3}x \,\epsilon_{ijk} M_{\rm gl}^{jk}(\boldsymbol{x}), \qquad i, j = 1, 2, 3$$
(24)

$$M_{\rm gl}^{ij}(\boldsymbol{x}) = x^i \, T_{\rm gl}^{j0}(\boldsymbol{x}) - x^j \, T_{\rm gl}^{i0}(\boldsymbol{x}) \tag{25}$$

$$T^{\mu\nu}_{\rm gl} = G^{a,\mu\alpha} G^{a,\nu}_{\ \alpha} - (1/4) \eta^{\mu\nu} G^{a,\alpha\beta} G^a_{\alpha\beta}$$
(26)

$$\langle\!\langle \mathcal{O} \rangle\!\rangle_{\mathcal{T}} = \langle \mathcal{O} \rangle_{\mathcal{T}} - \langle \mathcal{O} \rangle_{\mathcal{T}=0}$$
(27)

 $\underset{000}{\text{Gluodynamics under rotation}}$

Scale anomaly and magnetic gluon condensate ${\odot}{\bullet}{\circ}{\circ}{\circ}{\circ}$

Negative Barnett effect Co

Moment of inertia and magnetic gluon condensate

$$I_{\text{magn}}^{\text{gl}} = \int_{V} d^{3}x \Big[\langle\!\langle (\boldsymbol{B}^{a} \cdot \boldsymbol{x}_{\perp})^{2} \rangle\!\rangle_{T} + \langle\!\langle (\boldsymbol{B}^{a} \cdot \boldsymbol{n})^{2} \rangle\!\rangle_{T} \boldsymbol{x}_{\perp}^{2} \Big]$$
(28)
$$B_{i}^{a} = \frac{1}{2} \epsilon^{ijk} G_{jk}^{a}$$
(29)

$$\langle\!\langle B_i^a B_j^a \rangle\!\rangle_T = \frac{1}{3} \delta_{ij} \langle\!\langle (\boldsymbol{B}^a)^2 \rangle\!\rangle_T$$
(30)

$$I_{\text{magn}}^{\text{gl}} = \frac{2}{3} \int_{V} d^{3}x \, x_{\perp}^{2} \left\langle\!\left\langle \left(\boldsymbol{B}^{a}\right)^{2}\right\rangle\!\right\rangle_{T}$$
(31)

$$I_{\rm class} = \int_{V} d^{3}x \,\rho(\mathbf{x}) \,\mathbf{x}_{\perp}^{2}$$
(32)

$$\rho(T) \to \frac{2}{3} \langle\!\langle (\boldsymbol{B}^{a})^{2} \rangle\!\rangle_{T}$$
(33)

Scale anomaly and magnetic gluon condensate $_{\rm OO}{\bullet}{\circ}{\circ}{\circ}$

Negative Barnett effect

Conclusions

Moment of inertia and magnetic gluon condensate

luodynamics under rotation

Scale anomaly and magnetic gluon condensate $\circ\circ\circ\circ\circ\circ$

Negative Barnett effect

Conclusions

Scale anomaly and gluon condensate

$$\langle\!\langle G^2 \rangle\!\rangle_T = \langle\!\langle \mathcal{B}^2 \rangle\!\rangle_T + \langle\!\langle \mathcal{E}^2 \rangle\!\rangle_T \tag{34}$$

$$\varepsilon - 3p = \langle T^{\mu}_{\mu} \rangle = \frac{\beta(\alpha_s)}{4\pi} \langle \langle (G^a_{\mu\nu})^2 \rangle \rangle_T \equiv - \langle \langle G^2 \rangle \rangle_T$$
(35)

$$\beta(\alpha_s(\mu)) = \frac{\mathrm{d}\alpha_s(\mu)}{\mathrm{d}\ln\mu} < 0 \tag{36}$$

$$\langle\!\langle \mathcal{O} \rangle\!\rangle_{\mathcal{T}} = \langle \mathcal{O} \rangle_{\mathcal{T}} - \langle \mathcal{O} \rangle_{\mathcal{T}=0}$$
(37)

Gluodynamics under rotation

Scale anomaly and magnetic gluon condensate $_{\text{OOOO}}\bullet$

Negative Barnett effect

Conclusion:

Components of gluon condensate

troduction	Gluod
000	000

Scale anomaly and magnetic gluon condensate

Negative Barnett effect

Conclusion

Barnett effect

- Lattice method for studying the dependence of the EoS of gluodynamics on the rotation was introduced.
- Below the "supervortical temperature" $T_s = 1.50(10) T_c$ negative moment of inertia suggests an instability of rigidly rotating gluon plasma.
- We expect qualitatively the same results for QCD with dynamical quarks.
- The rotational instability is related to the scale anomaly and the magnetic gluon condensate.

Introduction 0000	Gluodynamics under rotation	Scale anomaly and magnetic gluon condensate	Negative Barnett effect 0	Conclusions ○●
Summary	/			

Thanks for attention!