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Closed string action
⊙ Polyakov string action (string sigma-model form):

SP = SG + SB + SΦ

• The SG, SB, SΦ actions: the most general sigma model string actions
preserving the symmetries of the theory and renormalizability:

G-coupling

SG = − 1
4πα′

∫
Σ
d2σ

√
g gαβ∂αX

µ(τ, σ)∂βXν(τ, σ)Gµν(Xµ)

B-coupling

SB = − 1
4πα′

∫
Σ
d2σ εαβ∂αX

µ(τ, σ)∂βXν(τ, σ)Bµν(Xµ)

Φ-coupling

SΦ = − 1
4π

∫
Σ
d2σ

√
gΦ(Xµ)R(2)(τ, σ).



• Low-energy limit. Requiring conformal and Weyl symmetries of the
σ-model string action, one ends up with the conditions ensuring the
vanishing of the corresponding β-functions:

βGµν : Rµν − 1
4HµσλH

σλ
ν + 3Dµ∂νΦ = 0,

βBµν : −1
2D

σHσµν +HσµνD
σΦ = 0,

βΦ : 1
6 [d− 10] − α′

2

[
D2Φ − 2(∇Φ)2 − 1

12H
2
]

= 0.

The effective 10d action from closed strings: SUPERGRAVITY

S = 1
2κ

∫
d10X

√
|G|e−2Φ

(
R+ 4(∂Φ)2 − 1

12H
2
)

√
should be understood as a universal one, i.e. any superstring back-

ground must satisfy the above equations√
the equations of motion following from this action coincide with the

conditions ensuring vanishing of the β-functions.



Open strings

adding open string sector
In the case of boundaries of the world sheet one can write the action
as

S = 1
1πα′

(∫
Σ
d2σ

1
2(∂αXµ∂

αXµ

+εαβBµν∂αXµ∂βX
ν) +

∫
∂Σ
dσ1Aµ(Xν)∂1X

µ
)

expanding the above action we get model dependent terms

SIIopen = − 1
2κ2

∫
d10x

∑
p

1
2(p+ 2)!F

2
p+2,

where Fp+2 is the field strength of a p+ 1 form gauge field. The
couplings Aµ get promoted to gauge fields on the subspace where
string endpoints live.



Brane degrees of freedom and effective spacetime geometry

Open strings ending on D-branes. Degrees of freedom of Open
strings.

A stack of multiple coincident D-
branes possess non-commutative
gauge degrees of freedom.



How gauge degrees of freedom appears?

The string endpoints on the same Dp branes transform under adjoint
representation of the gauge group. The large number of these branes
gives the background geometry.
The string endpoints ending on different Dp −Dp′ branes transform in
the fundamental. This is the way we introduce flavors in the theory.

k Dp

N Dp′ fund irrep

(I, J)

(V, Φ)

adj irrep adj irrep

(B1, B2)



Four-dimensional world: D3 branes

•The example of D3-branes.
The solution for the D3 branes can be obtained from solving the combined
system

S = 1
2κ2

∫
M
d10L(10) +

∫
VD3

d4LD3. (1)

The explicit solution for embedded D3-brane:

D3-brane ⇒



ds2 = H− 1
2dx2

(4) +H
1
2
(
dy2 + y2dΩ2

(5)

)
H(y) = 1 +

(
R

y

)4
,

F(5) = dx4 ∧ dH−1 + ⋆d4x ∧ dH−1,

eΦ = gs, R4 = 4πgsNc(α′)2.

(2)

• For small y the elementary brane solution has a warp factor which in the
near-horizon limit determines the geometry of the space-time.



AdS/CFT correspondence

In the near-horizon limit, y/R → 0, the theory in the bulk and that
on the stack of D3 brane decouple.

The geometry becomes that of AdS5 × S5

the conjecture is:
N = 4 U(N) super-Yang-Mills theory in 3 + 1
dimensions is the same as (or dual to) type IIB
superstring theory on AdS5 × S5 spacetime.

Type IIB Super-
string on AdS5 ×
S5 background

+

Type IIB Super-
Gravity in D=1+9
spacetime

N = 4 SU(Nc)
Supersymmetric
Yang-Mills

Type IIB Super-
Gravity in D=1+9
spacetime

+

≃
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How does the correspondence work?
Consider a spacetime M supplied with a boundary ∂M = Σ; bulk
fieldsΦi; boundary fields ϕk.
The metric of M is gµν while the induced metric on the boundary
∂M is g|∂M = γ.
Consider a radial slice of the spacetime Σρ at fixed ρ. The fields on
this slice will be also denoted by ϕk.
At given slice Σρ one can consider the amplitude

ΨΣρ [ϕi] =
∫

Φi|Σρ=ϕi

DΦie
iSB,M (Φi), (3)

where SB,M is the bulk action and the integral is evaluated with
Dirichlet boundary conditions for the fields on Σρ.
For any given CFT one can define the generating functional of
connected correlation functions

ZCFT [ϕi] = ⟨e
∫

Σ ϕiOi⟩. (4)



AdS/CFT correspondence

Thinking of ΨΣρ [ϕi] = eiS(ϕi) as on-shell amplitude defining connected
S-matrix elements, AdS/CFT correspondence states the equality of

ZCFT [ϕi] = ΨΣ0 [ϕi] , (5)

where Σ0 is the (asymptotic) boundary of the spacetime.

⊙ In what sense holographic correspondence?
In principle ΨΣρ represents the quantum spacetime but only trough
the dependence on the boundary metric!
Changing the radial slice changes the induced metric on Σρ! Thus,
knowing Σρ for all ρ (i.e. all possible γ) allows to reconstruct the
semi-classical spacetime!
On the other hand, assuming the correspondence, the variation of the
boundary means moving the radial slice in the bulk!



Anomalous dimensions
⊙ On any CFTd , there is a mapping between operators Oa(x) and states
on a Hilbert space of he theory on R× Sd−1,

Oa(x) ↔ |Oa⟩Sd−1 .

⊙ The eigenvalue of the translation generator along the holography
direction is ∆a = scaling dimension of Oa such that,

Oa(λx) = λ−∆aOa(x) =⇒ eτHτ |Oa⟩ = e−i∆a |Oa⟩,

where Hτ is the Hamiltonian corresponding to the dilatation operator in
radial quantization.

Anomalous dimensions

∆a (inCFT) = Ea (globalAdS).

The anoumalous dimensions are determined by the dispersion relations
from string side!



A simple pulsating string in AdS5 × S5

The set up: we consider a circular string which pulsates expanding and
contracting on S5 part of AdS5 × S5 (R2 = 2πα′√λ)

ds2 = R2
(
cos2 θdΩ2

3 + dθ2 + sin2 θdψ2 + dρ2 − cosh2 dt2
)
.

The ansatz ψ = mσ (string stretched along ψ direction), θ = θ(τ),
ρ = ρ(τ) and gij the metric of S3.
The reduced Nambu-Goto action in this case is

S = −m
√
λ

∫
dt sin θ

√
1 − θ̇2 − cos2 θgijϕ̇iϕ̇j ,

The Hamiltonian has the form

H =

√
Π2
θ + gijΠiΠj

cos2 θ
+

m2λ sin2 θ

.
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A simple pulsating string in AdS5 × S5

The wave function for the unperturbed theory (w = cos2 θ)

− 4
w

d

dw
w2(1 − w) d

dw
Ψ(w) + J(J + 2)

w
Ψ(w) = L(L+ 4)Ψ(w).

- ϕi - cyclic, gijΠiΠj → J(J + 2)
-L is eigenvalue of the S5 angular momentum
The solution to the above equation is (ℓ = L/2, j = J/2)

Ψ(w) =
√

2(ℓ+ 1)
(ℓ− j)!

1
wj+1

(
d

dw

)ℓ−j
wℓ+j(1 − w)ℓ−j ,

To first order in λ the energy is given by

E2 = L(L+ 4) +m2λ
L2 − J2

2L2 .

To first order in λ the anomalous dimension of the corresponding YM
operators (in notations of hep-th/0310188)

γ = m2λ

4L α(2 − α), α = 1 − J/L.



Classical pulsating string solutions in the 5d Kerr-AdS
background

This section is based on our joint work with A. A. Golubtsova, D. D.
Hristo, O. V. Geytota and R.R. Rashkov in Journal General Relativity and
Gravitation, [arXiv:2108.12621]

For the pure AdS case the energy of the string can be related to the
anomalous dimensions of single trace operators in N = 4 SYM
theory. In the black hole case at finite temperature we cannot
establish this connection, since the notion of the anonymous
dimension is defined in the conformal point.
The interpretation of results from holographic point of view is not
straightforward since the dual theory is at finite temperature.
Nevertheless, near or at conformal point the expressions can be
thought of as the dispersion relations of stationary states.
One can think on the relevance of the dispersion relations of the
states in the thermal ensemble of N = 4 SYM theory on S1 × S3.



Classical pulsating string solutions in the 5d Kerr-AdS
background

ds2 = −(1 + y2ℓ2)dT 2 + y2(dΘ2 + sin2 ΘdΦ2 + cos2 ΘdΨ2) (6)

+ 2M
y2Ξ3 (dT − a sin2 ΘdΦ − a cos2 ΘdΨ)2 (7)

+ y4dy2

y4(1 + y2ℓ2) − 2M
Ξ2 y2 + 2Ma2

Ξ3

, (8)

where
Ξ = 1 − a2ℓ2, (9)

M is the mass of the black hole, a is a rotational parameter and we use
the Hopf coordinates to parametrize the metric on the sphere with
0 ≤ Θ ≤ π

2 , 0 ≤ Φ,Ψ ≤ 2π.



A pulsating string in the 5d Kerr-AdS black hole

We can consider general pulsating string ansatz, such as

Θ ≡ ξ1 = ξ1(τ) , y ≡ ξ2 = ξ2(τ) , (10)
T ≡ X0 = x0(τ) +m0σ, x0(τ) = κτ, m0 = 0 , (11)
Φ ≡ X1 = m1σ + x1(τ) , Ψ ≡ X2 = m2σ + x2(τ) . (12)

For convenience, we use the following notations of the Kerr-AdS metric

ds2 =
2∑

i,j=1
gijdξidξj +

2∑
k,p=0

ĜkpdXkdXp , (13)



Semi-classical quantisation of the pulsating string
configuration in 5d Kerr-AdS geometry

The starting point is the Polyakov string action in the conformal gauge
written as follows

SP = − 1
4πα′

∫
dτdσ{

√
−hhαβ∂αXM∂βX

NGMN},

The Virasoro constraints are given by

Vir1:
∑
M,N

GMN

(
∂τX

M∂τX
N + ∂σX

M∂σX
N
)

= 0,

Vir2:
∑
M,N

GMN∂τX
M∂σX

N = 0.

The ansatz for the pulsating string configuration, involving the y-direction,
which is consistent with the equations of motion is

T = κ τ, y = y(τ), Θ = Θ∗ = const,

Φ = mϕσ, Ψ = mψσ .



Semi-classical quantisation of the pulsating string
configuration in 5d Kerr-AdS geometry

From Virasoro constraints we have an equation

ẏ2 =
(
κ2
(

1 + ℓ2y2 − 2M
Ξ3y2

)
− y2K2

)(
1 + ℓ2y2 − 2M

Ξ2y2 + 2Ma2

Ξ3y4

)
,

or

ẏ2 = κ2
(
ℓ2 − K2

κ2

)
ℓ2

y6 (y − y−)(y − y+)
4∏
j=1

(y − yj)(y − y∗
j ),

where y−, y+ are real zeros of blackening function, thus y+ is the horizon,
y∗

1, y
∗
2, y

∗
3, y

∗
4 are complex zeros of the blackening function while y1, y2, y3

and y4 are zeros of the first multiplier of equation for ẏ2 following from
Virasoro constraints. So we can always find appropriate conditions on the
right-hand side for the existence of a periodic solution

y− < 0 < y+ < y2 < y(τ) < y1,

Therefore, there exists a pulsating string configuration, expanding and
contracting between the turning points y1 and y2 .



Semi-classical quantisation of the pulsating string
configuration in 5d Kerr-AdS geometry

In Fig. below we plot the potential of the effective mechanical system. We
are able to tune parameters M , a,K and κ in such a way that there will be
two real positive roots y1 and y2. One can see that it has three positive
real zeroes y+, y1, y2. The evolution of the pulsating string is defined in
the region y1 < y(τ) < y2 .

y1y2y+

1.0 1.5 2.0 2.5 3.0 3.5 4.0
y

-5

5

10

V(y)

Figure: The behaviour of the effective potential of the system. The parameters
are fixed as follows: M = 1, a = 0.2, K2 = 1.55, κ2 = 1.5, y+ = 1.01347,
y1 = 3.45935, y2 = 1.66944.



Semi-classical quantisation of the pulsating string
configuration in 5d Kerr-AdS geometry

The Nambu-Goto action becomes

SNG = − 1
α′

∫
dτ

√√√√√ 2∑
k,p=1

Ĝkpmkẋp +
2∑

k=1
Ĝk0mk κ

2

+

− ∥m⃗∥2

 2∑
i,j=1

gij ξ̇iξ̇j +
2∑

k,p=1
ĝkp ẋkẋp + Ĝ00 κ2 + 2

2∑
k=1

Ĝ0k κẋk

 ,

(14)

where 1/α′ =
√
λ is the ’t Hooft coupling constant and

∥m⃗∥2 =
2∑

k,h=0
Ĝkhmkmh ≡

2∑
k,h=1

ĝkh(ξ1, ξ2)mkmh > 0 . (15)



Semi-classical quantisation of the pulsating string
configuration in 5d Kerr-AdS geometry

The problem reduces again to the dynamics of an effective point-particle
with Lagrangian

Leff = −
√
λ

√
...... . (16)

where

√
...... ≡

√√√√√ 2∑
k,p=1

ĝkpmkẋp +
2∑

k=1
Ĝk0mk κ

2

− ∥m⃗∥2

 2∑
i,j=1

gij ξ̇iξ̇j+

+
2∑

k,p=1
ĝkp ẋkẋp + Ĝ00 κ2 + 2

2∑
k=1

Ĝ0k κẋk

 . (17)



Semi-classical quantisation of the pulsating string
configuration in 5d Kerr-AdS geometry

Consider the Hamiltonian formulation → the canonical momenta

Πξi
=

√
λ

∥m⃗∥2 gij ξ̇j√
......

, (18)

Πxp =
√
λ

∥m⃗∥2 ĝpq ẋq − (ĝkqmkẋq) ĝpqmq + ∥m⃗∥2 Ĝp0 κ− (Ĝk0mkκ) ĝpqmq√
......

,

(19)

which also implies the constraint

2∑
p=1

mp Πxp = 0. (20)



Semi-classical quantisation of the pulsating string
configuration in 5d Kerr-AdS geometry
By Legendre transformation → (square of) the pulsating string
Hamiltonian

H2

κ2 = K2(y)


2∑

i,j=1
Πξi

gij Πξj
+

2∑
i,j=1

Πxi

[
h2

2(y)
K2(y) δ̂

ij + ĝij
]

Πxj + λ ∥m⃗∥2

 ,

(21)
where (

δ̂ij
)

=
(

1 1
1 1

)
, i, j = 1, 2 . (22)

The above Hamiltonian can be considered as the effective Hamiltonian of
an effective point-particle on the Kerr-AdS.
⇒ The effective potential is:

−λκ2 ∥m⃗∥2

Ĝ00 +
2∑

l,s=1
Ĝ0l ĝ

ls Ĝs0

 ≡ λκ2 ∥m⃗∥2 K2(y) ≡ λU(Θ, y) .

(23)



Semi-classical quantisation of the pulsating string
configuration in 5d Kerr-AdS geometry

The square of the Hamiltonian on the reduced subspace y = const is:

H2 = κ2K2

ΠΘ g
ΘΘ ΠΘ +

2∑
i,j=1

Πxi ĝ
ij Πxj + λ ∥m⃗∥2

 . (24)

The effective potential is:

λκ2K2 ∥m⃗∥2 ≡ λU(Θ) (25)

The potential ≪ the kinetic part
⇒ calculate perturbatively quantum corrections to the energy



Semi-classical quantisation of the pulsating string
configuration in 5d Kerr-AdS geometry
The kinetic term of the Hamiltonian (24) can be considered as a three
dimensional Laplace-Beltrami operator of the Kerr-AdS subspace with
y = const

P⃗ 2 =

ΠΘ g
ΘΘ ΠΘ +

2∑
i,j=1

Πxi ĝ
ij Πxj

 −→ △(3)
Kerr−AdS , (26)

which defines the eigen-functions of the Hamiltonian, satisfying the
following Schrödinger equation

△(3)
Kerr−AdS F = − E2

κ2K2 F . (27)

It is convenient to define a new variable z = sin2 Θ , 0 ≤ z ≤ 1 . Then
the equation can be written as{

d2

dz2 + (1 − 2z)
z(1 − z)

d

dz
− N2

z2(1 − z)2 + Ê2

z(1 − z)

}
F (z) = 0 , (28)

where N = n2

4 and Ê2 = y2 E2

κ2 K2 .



Semi-classical quantisation of the pulsating string
configuration in 5d Kerr-AdS geometry
In addition, we have to ensure that the solutions F (Θ) are square
integrable with respect to the measure Θ (respectively z). The
integrability condition leads to the following restriction on the parameters

2N + 1
2 − 1

2

√
1 + 4Ê2 = −k , k ∈ N . (29)

This requirement imposes energy quantization:

E2 = κ2 K
2

4y2

[
(4N + 1 + k)2 − 1

]
. (30)

The condition (29) converts the solution in terms of Jacobi ortogonal
polynomials (in this case the solution of the equation can also be written
directly in terms of Shifted Legendre polynomials)

F (z) = C zα/2 (1 − z)β/2 k! Γ(α+ 1)
Γ(α+ 1 + k)P

(α,β)
k (1 − 2z) , k ∈ N , (31)

where α = β = 2N ≡ n2

2 , n ∈ Z .



Wave functions
It is more convenient to work in terms of u ≡ 1 − 2z , −1 ≤ u ≤ 1

Fk,n(u) = C

(1 − u

2

)α/2 (1 + u

2

)α/2 k! Γ(α+ 1)
Γ(α+ 1 + k)P

(α,β)
k (u) (32)

Then with respect to the measure

dΩ =
√

− detG(4) dΘ dΦ dΨ = −
√

h1 h2
2aMΞ3 y2

du

4 dΦ dΨ, (33)

we find that the normalized wave function is

fk,n(u) =
√

(2α+ 1 + 2k) k! Γ(2α+ 1 + k)
2α−1 Γ(α+ 1 + k) Γ(α+ 1 + k) (1−u)α/2 (1+u)α/2P

(α,α)
k (u) .

(34)
Finally, the total free wave functions have the form

f totk,n(u, Φ, Ψ) =
√

(2α+ 1 + 2k) k! Γ(2α+ 1 + k)
ω(y) 2α−1 Γ(α+ 1 + k) Γ(α+ 1 + k) ×

× (1 − u)α/2 (1 + u)α/2P
(α,α)
k (u) einΦ e−inΨ . (35)



Leading correction to the energy

The next step is to calculate perturbatively the corrections to the energy
of the free ground states.
Perurbatively, the first correction to the energy reads

δE2 = λ ⟨ f totk,n |U | f totk,n ⟩ = λ

1∫
−1

2π∫
0

2π∫
0

∣∣∣f totk,n(u, Φ, Ψ)
∣∣∣2 U(u, Φ, Ψ)dΩ(u,Φ,Ψ).

(36)
The form of the potential :

U(Θ) = κ2K2 ∥m⃗∥2 = κ2K2
2∑

k,h=1
ĝkh(y, Θ)mkmh , (37)

where

∥m⃗∥2 = y2m2
1 sin2 Θ + y2m2

2 cos2 Θ + 2a2M

y2Ξ3

(
m1 sin2 Θ +m2 cos2 Θ

)2
.

(38)



Leading correction to the energy

Using the scalar product (36) and some properties of orthogonal Jacobi
polynomials, one can compute the first correction to the energy

δE2 = λκ2K2 2α−1
{
y2 (m2

1 +m2
2)+

+ a2M

y2Ξ3 (m2
1 +m2

2)
[ (k + 2α+ 1)(k + 2α+ 2)(k + α+ 2)

(2k + 2α+ 1)(k + α+ 1)(2k + 2α+ 3)+

+ (k + α− 1)(k − 1)k
(2k + 2α+ 1)(2k + 2α− 1)(k + α) + (k + 2α+ 1)k

(k + α+ 1)(k + α)

]
+

+ 2a2M

y2Ξ3 m1m2

[ (k + 2α+ 1)(k + 2α+ 2)
(2k + 2α+ 1)(2k + 2α+ 3)+

+2k(k + 2α+ 1)
(2k + 2α+ 1)2 + k(k − 1)

(2k + 2α+ 1)(2k + 2α− 1)

]}
. (39)



Leading correction to the energy

On other hand we need the limit of large values for the energy E and tne
quantum number n, which corresponds to the Killing directions. Since
α = β = 2N ≡ n2

2 , n ∈ Z , Ê2 = y2 E2

κ2 K2 and taking into account the
requirement (29) one has asymptotic behavior k ∼ Ê − α . Therefore,
this gives the following approximation of the correction to the energy

δE2 = λκ2K22α−1
{
y2(m2

1 +m2
2) + 3

2
a2M

y2Ξ3 (m2
1 +m2

2) + 2a
2M

y2Ξ3 m1m2

−1
2
a2M

y2Ξ3 (m2
1 +m2

2)
(
α

Ê

)2
}
. (40)





Summary and comments

The semiclassical quantization of pulsating string dynamics gives us a
powerful method for obtaining dispersion relations in different
backgrounds with a compact subspace.
We probe the five-dimensional Kerr-AdS space time by pulsating
strings.First we find particular pulsating string solutions and then
semi-classically quantize the theory.
We obtain the wave function of the problem and thoroughly study the
corrections to the energy, which according to the holographic
dictionary are related to anomalous dimensions of certain operators in
the dual gauge theory. The interpretation of results from holographic
point of view is not straightforward since the dual theory is at finite
temperature. Nevertheless, near or at conformal point the expressions
can be thought of as the dispersion relations of stationary states.



THANK YOU
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