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Abstract

We present a method to obtain approximations to solutions of differential
equations with slowly varying coefficients. So far we considered three
different cases as applications of our method: a linear partial differential
equation, time-dependent Schrodinger equation, and the linear equation
which emerges from the nonlinear Schrodinger equation in the large SNR
limit.

Demonstration of the method

The simplest case: a linear partial differential equation:

∂zψ(z, t) +B∂tψ(z, t) + a(t)ψ(z, t) = η(z, t), (1)

where ψ(z = 0, t) = X(t).
The function a(t) is slowly varying in the following sense:

B̃ ≡ BL

Ta
≪ 1,

where L is the maximum value of the variable z, and Ta is the time the
function a(t) takes to change considerably. The equation (1) can be solved
exactly, but we consider it, because it is a good way to demonstrate the
work of our method:
1. Solve Eq. (1) with a(t) = const = a, which is easier than the orig-

inal equation. In the resulting solution return time dependence to
the function a(t), i.e. put a(t) instead of a. This is the zero-order
approximation:

ψ(0)(z, t; {a(t)}) = X(t−Bz)e−a(t)z

+

z∫
0

dz′η(z′, t−B(z − z′))e−a(t)(z−z
′).

2. Put ψ = ψ(0) + ψ(1) (with ψ(n) ∝ B̃n) in the Eq. (1) and neglect
terms of orderO(B̃2) if they appear. The terms of order B̃ come from
ȧ(t). In the resulting equation put a(t) = const and ȧ(t) = const:

∂zψ
(1) +B∂tψ

(1) + aψ(1) = −Bȧ∂aψ(0)

and solve it for ψ(1) returning time dependence to a and ȧ in the
solution.

3. Finding the second-order correction is similar: put ψ = ψ(0)+ψ(1)+
ψ(2) in the Eq. (1) and neglect terms of order O(B̃3). Solve the

resulting equation for ψ(2) putting a(t), ȧ(t), ä(t) = const.

Application to the Schrodinger equation

The Schrodinger equation:

i∂tψ(t, z) +B∂2zψ(t, z)− V (z)ψ(t, z) = 0 (2)

with ψ(t = 0, z) = X(z) can be investigated with our method in the
following regime:

BT

L2V
≪ BT

LV LX
≪ 1,

BT

L2X
∼ 1,

where LV is the characteristic scale of change of the potential V (z) and
LX is the characteristics scale of change of the initial condition X(z).

Considering the potential V (z) to be a slowly varying function we
can apply our algorithm just as we did for the previous equation: we write
the solution as the series ψ =

∑
nψ

(n) in which ψ(n) ∝ (BT/LXLV )
n

and obtain following equation for ψ(n):

i∂tψ
(n)(t, z) +B∂2zψ

(n)(t, z)− V (z)ψ(n)(t, z) = R(n)(t, z), (3)

where the r.h.s R(n) depends on derivatives of V (z) and on the V (z)
itself. The equation (3) can be solved putting V (z) and its derivatives to
be constant and using Fourier transform with respect to the variable z.
Using the solution we can calculate, for instance, the quantum-mechanical
partition function in form of the perturbative expansion in B:

ZQM (T ) ≡
∫
dz ⟨z| e−iĤT |z⟩ =

∫
dz
e−iV (z)T
√
4πiTB

{
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B
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,

where Vn = ∂nz V (z).

Application to a nonlinear noisy
communication channel

The nonlinear Schrodinger equation (NLSE) with Gaussian noise η(z, t)
which describes propagation of the signal ψ(z, t) through fiber:

∂zψ(z, t) + iβ∂2tψ(z, t)− iγ|ψ(z, t)|2ψ(z, t) = η(z, t)

can be converted to a linear problem in the large SNR limit:

∂zF(a) + iβ∂2tF(a) − 2β∂tθ0∂tF(a) + iβF(a)

(
i∂2t θ0 − (∂tθ0)

2
)

+i
µ

L
F(a) − 2iγ|Φ̃|2F(a) − iγΦ̃2F̄(a) = η(a).

where ψ(z, t) = Φ(z, t) + F (z, t)eiθ0(z,t), and functions θ0 and µ =
γL|X|2 are related to the input signal ψ(z = 0, t) = X(t). The function
Φ is the solution to NLSE without noise. The subscript (a) corresponds
to the averaged signal, which in our model is observed by the receiver
and is defined as follows:

F(a)(z, t) =
1

2τa

+τa∫
−τa

dt′F (z, t′).

The characteristic time of change of an averaged function is τa. Our
method can be used to solve the equation above in the following regime:

β̃ ≪ β̃a ≪ 1,
βL

τ2a
∼ 1,

with β̃ = βL/T 2
X and β̃a = βL/TXτa. The functions which are consid-

ered to be slowly varying are θ0 and µ. The solution has the form of
perturbative expansion in the parameter β̃a. So far we have obtained the
solution up to the first order in β̃ (the second order in β̃a). It can be used
to calculate correlators of the output signal ψ(z = L, t) = Y (t) and then
information characteristics (mutual information, channel capacity, etc.).


