# Multichannel scattering for the Schrödinger equation on a line with different thresholds at both infinities 

P.O. Kazinski and P.S. Korolev

Physics Faculty, Tomsk State University, Russia

## Problem formulation

Matrix Shrodinger equation on the line

$$
\begin{equation*}
\left[\partial_{z} g_{i j}(z) \partial_{z}+V_{i j}(z ; \lambda)\right] u_{j}(z)=0, \quad z \in \mathbb{R}, \quad i, j \in\{1, \ldots, N\}, \tag{1}
\end{equation*}
$$

Where $V_{i j}(z ; \lambda)=V_{i j}(z)-\lambda g_{i j}(z)$, and $\lambda$ is auxiliary parameter.
We also assume that there

$$
\begin{array}{ll}
\left.g_{i j}(z)\right|_{z>L}=g_{i j}^{+}, & \left.V_{i j}(z)\right|_{z>L}=V_{i j}^{+},  \tag{2}\\
\left.g_{i j}(z)\right|_{z<L}=g_{i j}^{\bar{\prime}} & \left.V_{i j}(z)\right|_{z<-L}=v_{i j}^{-},
\end{array}
$$

By definition, the Jost solutions to Eq. (1) have the asymptotics

$$
\begin{equation*}
\left(F_{ \pm}^{+}\right)_{i s}(z ; \lambda) \underset{z \rightarrow+\infty}{\longrightarrow}\left(f_{+}\right)_{i s^{\prime}}\left(e^{ \pm i K_{+} z}\right)_{s^{\prime} s}, \quad\left(F_{ \pm}^{+}\right)_{i s}(z ; \lambda) \underset{z \rightarrow-\infty}{\longrightarrow}\left(f_{+}\right)_{i s^{\prime}}\left(e^{ \pm i K_{+} z}\right)_{s^{\prime} s} . \tag{3}
\end{equation*}
$$

## Historical review

- Single channel scattering problem for one-dimensional Shrodinger equation on the line was solved by Fadeev 1964 [1,2]
- The proof of unitarity of the $S$-matrix on the half line in the presence of closed scattering channels is given by Newton 1982 [3]
- Some scattering and analytical properties for two-Channel Hamiltonians were revealed by Melgaard 2001 [4,5]
- Multichannel scattering problem on the line for the one-dimensional Shrodinger equation on the line was investigated relatively recent, mostly by Aktosun [6-9], however the unitarity was not proved.

Nevertheless, to our knowledge, the description of properties of the S-matrix, of the Jost solutions, and of the bound states in the general case of multichannel scattering on a line with different thresholds at both left and right infinities is absent in the literature. Our aim is to fill this gap.

## Main identities

The Jost solutions $F_{ \pm}^{+}$and $F_{ \pm}^{-}$constitute bases in the space of solutions of Eq.(1). Consequently,

$$
\begin{align*}
& F_{+}^{+}=F_{+}^{-} \Phi_{+}+F_{-}^{-} \Psi_{+}  \tag{4}\\
& F_{-}^{+}=F_{+}^{-} \Psi_{-}+F_{-}^{-} \Phi_{-},
\end{align*}
$$

Let us introduce the transmission matrices $t_{(1,2)}$ and the reflection matrices $r_{(1,2)}$

$$
\begin{equation*}
F_{+}^{+} t_{(1)}=F_{+}^{-}+F_{-}^{-} r_{(1)}, \quad F_{-}^{-} t_{(2)}=F_{-}^{+}+F_{+}^{+} r_{(2)}, \tag{5}
\end{equation*}
$$

Define the $S$-matrix as

$$
S:=\left[\begin{array}{ll}
t_{(1)} & r_{(2)}  \tag{6}\\
r_{(1)} & t_{(2)}
\end{array}\right] .
$$

Then the $S$-matrix possesses the symmetries

$$
\begin{gathered}
\bar{\Phi}_{ \pm}:=\Phi_{\mp}, \\
\bar{\Psi}_{ \pm}:=\Psi_{\mp} .
\end{gathered} \quad\left[\begin{array}{cc}
0 & K_{-} \\
K_{+} & 0
\end{array}\right] S=S^{T}\left[\begin{array}{cc}
0 & K_{+} \\
K_{-} & 0
\end{array}\right], \quad\left[\begin{array}{cc}
0 & K_{-} \\
K_{+} & 0
\end{array}\right] \bar{S}=\bar{S}^{T}\left[\begin{array}{cc}
0 & K_{+} \\
K_{-} & 0
\end{array}\right],
$$

## The case of all scattering channels are open

Theorem 1. If $\lambda$ belongs to none of the cuts of the functions $\left(K_{ \pm}\right)_{s}, s \in\{1, \ldots, N\}$, i.e., when all the scattering channels are open, the S-matrix is unitary

$$
S^{\dagger}\left[\begin{array}{cc}
K_{+} & 0  \tag{9}\\
0 & K_{-}
\end{array}\right] S=\left[\begin{array}{cc}
K_{-} & 0 \\
0 & K_{+}
\end{array}\right]
$$

Remark. Introducing the notation

$$
\begin{equation*}
\widetilde{\Phi}_{ \pm}:=K_{-}^{\frac{1}{2}} \Phi_{ \pm} K_{+}^{-\frac{1}{2}}, \quad \tilde{\psi}_{ \pm}:=K_{-}^{\frac{1}{2}} \Psi_{ \pm} K_{+}^{-\frac{1}{2}} \tag{10}
\end{equation*}
$$

One can reduce (9) to the standard form $\tilde{S}^{\dagger} \tilde{S}=1$.

Proposition 1. If all scattering channels are open, there are no bound states.

## Identities in the subspace of open channels

We split the relations (5) into blocks with respect to the indices $s, s^{\prime}$ in accordance with splitting into open and closed channels,

$$
\begin{align*}
& \left(F_{+}^{+}\right)_{o} t_{(1) o o}+\left(F_{+}^{+}\right)_{c} t_{(1) c o}=\left(F_{+}^{-}\right)_{o}+\left(F_{-}^{-}\right)_{o} r_{(1) o o}+\left(F_{-}^{-}\right)_{c} r_{(1) c o} \\
& \left(F_{+}^{+}\right)_{o} t_{(1) o c}+\left(F_{+}^{+}\right)_{c} t_{(1) c c}=\left(F_{+}^{-}\right)_{c}+\left(F_{-}^{-}\right)_{o} r_{(1) o c}+\left(F_{-}^{-}\right)_{c} r_{(1) c c} \\
& \left(F_{-}^{-}\right)_{o} t_{(2) o o}+\left(F_{-}^{-}\right)_{c} t_{(2) c o}=\left(F_{-}^{+}\right)_{o}+\left(F_{+}^{+}\right)_{o} r_{(2) o o}+\left(F_{+}^{+}\right)_{c} r_{(2) c o}  \tag{11}\\
& \left(F_{-}^{-}\right)_{o} t_{(2) o c}+\left(F_{-}^{-}\right)_{c} t_{(2) c c}=\left(F_{-}^{+}\right)_{c}+\left(F_{+}^{+}\right)_{o} r_{(2) o c}+\left(F_{+}^{+}\right)_{c} r_{(2) c c} .
\end{align*}
$$

Theorem 2. The $S$-matrix in the subspace of open channels is unitary.

$$
\begin{align*}
& t_{(2) o o}^{*} t_{(1) o o}+r_{(1) o o}^{*} r_{(1) o o}=1,  \tag{12}\\
& t_{(1) o o}^{\dagger}\left(K_{+}\right)_{0} t_{(1) o o}+r_{(1) o o}^{\dagger}\left(K_{-}\right)_{0} r_{(1) o o}=\left(K_{-}\right)_{0} .
\end{align*}
$$

Theorem 3. The following condition $\operatorname{det} \Phi_{+}(\lambda)=0, \quad \lambda \in \mathbb{R}$,
is a necessary and sufficient condition for the existence of bound states of Eq. (1).

## An electrodynamic example: wire metamaterial



Fig. 1
Introducing the scalar plasmon field $\Psi$, the non-locality of equations (1) may be resolved

$$
\begin{align*}
& \left(\varepsilon_{0} k_{0}^{2}-\left(\hat{k}_{z}\right)^{2}\right) \Psi+\omega_{p}^{2} A_{3}=0 \\
& \left(\varepsilon_{0} k_{0}^{2} \delta_{i j}-\operatorname{rot}_{i j}^{2}\right) A_{j}+\varepsilon_{0} k_{0}^{2} z_{i} \Psi=0 . \tag{15}
\end{align*}
$$

$$
\begin{aligned}
& \text { Unitarity relation holds } \\
& \left|r_{1}\right|^{2}+\left|r_{2}\right|^{2}+\left|t_{1}\right|^{2}+\left|t_{2}\right|^{2}=1
\end{aligned}
$$

Fig. 2

## Summary

- It has been shown that the Jost solutions are the different branches of the same vector-valued analytic function on a double-sheeted Riemann surface.
- The key result of this work is Theorem 2 that proves unitarity of the scattering matrix in the subspace of open channels. The proof of this fact appears to be obtained for the first time.
- The weak version of the Theorem 2 , the statement of about unitarity in the case when all scattering channels are open is also proved.
- The condition determining the bound states has been obtained.
- The results of the work are applicable in electrodynamic of continuous media, in particular, for the theories with large spatial dispersion. Corresponding wiremetamaterial example is presented.

Acknowledgments. This study was supported by the RSF project 21-71-10066.
Based on research P.O. Kazinski, P.S. Korolev, arXiv:2307.00473v1

## References.

[1] Faddeev, L. D.: On the connection between the S-matrix and the potential for the one-dimensional Schrödinger operator [in Russian]. DAN SSSR 121, 63-66 (1958)
[2] Faddeev, L. D.: Properties of the S-matrix of the one-dimensional Schrödinger equation [in Russian]. Trudy Mat. Inst. Steklov 73, 314 (1964)
[3] Newton, R. G.: Scattering Theory of Waves and Particles. Springer-Verlag, New York (1982)
[4] Melgaard, M.: Spectral Properties at a Threshold for Two-Channel Hamiltonians: II. Applications to Scattering Theory. J. Math. Anal. Appl. 256, 568-586 (2001)
[5] Melgaard, M.: On bound states for systems of weakly coupled Schrödinger equations in one space dimension. J. Math. Phys. 43, 5365-5385 (2002)
[6] Aktosun, T., Klaus, M., van der Mee, C.: Scattering and inverse scattering in one-dimensional nonhomogeneous media. J. Math. Phys. 33, 1717-1744 (1992)
[7] Aktosun, T.: Bound states and inverse scattering for the Schrödinger equation in one dimension. J. Math. Phys. 35, 6231-6236 (1994)
[8] Aktosun, T., Klaus, M., van der Mee, C.: Small-energy asymptotics of the scattering matrix for the matrix Schrödinger equation on the line. J. Math. Phys. 42, 4627-4652 (2001)
[9] Aktosun, T., Klaus, M., van der Mee, C.: Direct and inverse scattering for selfadjoint Hamiltonian systems on the line. Integral Equ. Oper. Theory. 38, 129-171 (2000)

