

Laboratory of Radiation Biology Joint Institute for Nuclear Research

Clustered DNA double-strand breaks formation under the influence of ionizing radiation with different physical characteristics

Shamina Daria, Hramco T., Krupnova M.

Scientific supervisor: Doctor of Science A. V. Boreyko

JINR Association of Young Scientists and Specialists Conference (AYSS-2023)

Introduction

Geunil Yi, 2023

Research goal

Visualization and analysis of clustered DNA double-strand breaks (DSB) structure in human fibroblasts after exposure to low- and intermediate-energy accelerated ions

Irradiation parameters

Type of irradiation	LET, keV/µm	Energy, MeV/n	Dose, Gy	Radiation source
¹⁵ N ions	183	13	2.20	U-400M, FLNR JINR
	85	33	1	
¹¹ B ions	138	8	1	
	91	13		
	44	32		
²⁰ Ne ions	132	47	1	
¹² C ions	10	500	0.30	Nuclotron, VBLHEP JINR
protons	2	30	1	U-120M, NUCLEAR PHYSICS INSTITUTE CAS
γ-rays ⁶⁰ Co	0.3		0.8	Rocus – M, DLNP JINR

Materials and methods

Conclusions

- The kinetics of clustered DNA DSB repair after irradiation with accelerated ¹²C ions is slower compared to the action of γ-rays and protons. This may indicate a more complex structure of damage induced by heavy charged particles
- Different accelerated ions with the same LET induce DNA damage of different complexity and repair efficiency. Accelerated ²⁰Ne ions induce more repair-resistant DNA damage
- With decreasing particle energy and increasing their LET, the efficiency of clustered DNA DSB repair decreases

Thank you for your attention!

Immunostaining procedure

