Directed and elliptic flow of protons in the heavy ion collisions at 2-4 GeV

Mikhail Mamaev (NRNU MEPhI, INR RAS)

This work is supported by: the Special Purpose Funding Programme within the NICA Megascience Project in 2023 and the RSF grant No. 22-12-00132

The XXVII International Scientific Conference of Young Scientists and Specialists 30/10/2023

Anisotropic flow & spectators

Anisotropic flow is sensitive to:

Time of the interaction between overlap region and spectators

$$t_p = \frac{2R}{\gamma\beta}$$

Time of the expansion of the created in the collision matter (c is speed of sound)

$$t_{exp} = \frac{R}{c_s}$$

v_n as a function of collision energy

P. DANIELEWICZ, R. LACEY, W. LYNCH 10.1126/science.1078070

Describing the high-density matter using the mean field Flow measurements constrain the mean field

Discrepancy is probably due to non-flow correlations in E895 measurements

The HADES at SIS-18 accelerator (GSI, Germany)

Reaction plane estimation using the deflection of projectile spectors

Proton v_1 vs y, p_T and dv_1/dy vs centrality

- dv_1/dy is extracted with a fit using a+bx in -0.45 < y < 0.15
- Also tried a general fit form $a+bx+cx^3$ with (a!=0) and without intercept (a=0) in different fit ranges (-0.65 < y < 0.15): same result

25

30

dv_1/dy scaling with collision energy and system size

During the passing time of nuclei:

- Protons composing the hot matter in the overlap region are mixed with protons within cold spectator matter
- Expansion of the matter within the overlap region deflects protons in the reaction plane ⇒ positive directed flow of protons

 $dv_1/dy|_{y=0}$ is proportional to passing time $t_p=2R/\sinh(y_{beam})$ \Rightarrow scaling with y_{beam} is expected

dv_1/dy scaling with collision energy and system size

large nuclei smaller nuclei R_L b_L k_s b_s

 v_1 reflects the initial asymmetry of the overlap region \Rightarrow expect similar v_1 for the same relative impact parameter b/R

$$b_L/R_L = b_s/R_s$$

During the passing time of nuclei:

- Protons composing the hot matter in the overlap region are mixed with protons within cold spectator matter
- Expansion of the matter within the overlap region deflects protons in the reaction plane ⇒ positive directed flow of protons

 $dv_1/dy|_{y=0}$ is proportional to passing time $t_p=2R/\sinh(y_{beam})$ \Rightarrow scaling with y_{beam} is expected

- Scaled v₁ does not depend on system size and energy of the collision
- Shape of the v_1 vs p_T does not change with system size and energy of the collision

After correcting for dependence on the passing time (y_{beam}) dv₁/dy' is independent of the size of colliding nuclei and collision energy and depends only on the relative impact parameter (/ A^{1/3})

JAM-MF: v_1 scaling with collision energy and system size

We observe similar scaling properties in JAM-MF model

The BM@N experiment

Tracking system within the magnetic field

R1: BM@N Run8 DATA: Xe+Cs@3.8A GeV

T-: all negatively charged particles with:

- 1.5 < η < 4
- p_τ > 0.2 GeV/c

T+: all positively charged particles with:

- 2.0 < η < 3
- p_T > 0.2 GeV/c

Results for v_1 and v_2 are in progress

Summary

- At $\sqrt{s_{NN}}=2.4-2.6$ GeV (E_{kin}=1.23-1.58) region we observe dv₁/dy scaling with collision energy (passing time / y_{beam}) and system size:
 - \circ dv₁/dy' is independent of the size of colliding nuclei and collision energy
 - \circ dv₁/dy' depends only on the relative impact parameter (/ A^{1/3})
 - \circ based on the preliminary results of the HADES experiment we observe v₁ is strongly influenced by the interaction with spectator matter
- The analysis of the recent BM@N experimental run is ongoing:
 - The resolution correction factor R₁ calculated using different combinations of Q-vectors is consistent within the statistical errors

BACKUP

- All the methods used for performance study were carried out using QnTools framework: <u>https://github.com/HeavyIonAnalysis/QnTools</u> (well documented and well-tested)
- Methods for flow measurements in fixed-target experiments were tested on experimental data from NA61/SHINE, HADES and ALICE
- Tested and implemented in MPD root

dv_1/dy scaling with collision energy and system size

- Scaling with collision energy is observed in model and experimental data
- Scaling with system size is observed in model and experimental data
- We can compare the results with HIC-data from other experiments(e.g. STAR-FXT Au+Au

Flow vectors

From momentum of each measured particle define a u_n -vector in transverse plane:

$$u_n = e^{in\phi}$$

where ϕ is the azimuthal angle

Sum over a group of u_n -vectors in one event forms Q_n -vector:

$$Q_n = rac{\sum_{k=1}^N w_n^k u_n^k}{\sum_{k=1}^N w_n^k} = |Q_n| e^{in \Psi_n^{EP}}$$

 $\Psi_{n}^{\ \text{EP}}$ is the event plane angle

Additional subevents from tracks not pointing at FHCal: **Tp:** p; 0.4<y<0.6; 0.2 < p_T < 2 GeV/c; w=1/eff **Tπ:** π-; 0.2<y<0.8; 0.1 < p_T < 0.5 GeV/c; w=1/eff **T-:** all negative; 1.0<η<2.0; 0.1 < p_T < 0.5 GeV/c; w=1/eff ¹⁷

Flow methods for v_n calculation

Tested in HADES:

M Mamaev et al 2020 PPNuclei 53, 277–281 M Mamaev et al 2020 J. Phys.: Conf. Ser. 1690 012122

Scalar product (SP) method:

$$v_1 = rac{\langle u_1 Q_1^{F1}
angle}{R_1^{F1}} \qquad v_2 = rac{\langle u_2 Q_1^{F1} Q_1^{F3}
angle}{R_1^{F1} R_1^{F3}}$$

Where R_1 is the resolution correction factor

$$R_1^{F1}=\langle \cos(\Psi_1^{F1}-\Psi_1^{RP})
angle$$

Symbol "F2(F1,F3)" means R₁ calculated via (3S resolution):

$$R_1^{F2(F1,F3)} = rac{\sqrt{\langle Q_1^{F2}Q_1^{F1}
angle \langle Q_1^{F2}Q_1^{F3}
angle}}{\sqrt{\langle Q_1^{F1}Q_1^{F3}
angle}}$$

Method helps to eliminate non-flow Using 2-subevents doesn't

Symbol "F2{Tp}(F1,F3)" means R₁ calculated via (4S resolution):

$$R_1^{F2\{Tp\}(F1,F3)} = \langle Q_1^{F2}Q_1^{Tp}
angle rac{\sqrt{\langle Q_1^{F1}Q_1^{F3}
angle}}{\sqrt{\langle Q_1^{Tp}Q_1^{F1}
angle \langle Q_1^{Tp}Q_1^{F3}
angle}}$$

Azimuthal asymmetry of the BM@N acceptance

19

SP R1: DCMQGCM-SMM Xe+Cs@4A GeV

SP gives unbiased estimation of v_n (root-mean-square) EP gives biased estimation (somewhere between mean and RMS)

Using the additional sub-events from tracking provides a robust combination to calculate resolution ²⁰

Models

- Cascade mode fail to reproduce flow signal
- Mean-Field models reproduce flow signal up to 4th harmonic

Simulation datasample

- Xe+Cs nuclei collisions
- DCMQGSM-SMM model (realistic yields of spectator fragments), describes flow poorly
- JAM model (realistic flow signal)
- Geant4 transport code (important for simulation of hadronic showers in the forward calorimeter)
- Realistic reconstruction

	2A GeV	3A GeV	4A GeV
DCMQGSM-SMM	6M	6M	2M
JAM MD2	3M	3M	5M

Flow vectors

From momentum of each measured particle define a u_n -vector in transverse plane:

$$u_n = e^{in\phi}$$

where ϕ is the azimuthal angle

Sum over a group of u_n -vectors in one event forms Q_n -vector:

$$Q_n = rac{\sum_{k=1}^N w_n^k u_n^k}{\sum_{k=1}^N w_n^k} = |Q_n| e^{in \Psi_n^{EP}}$$

 $\Psi_{n}^{\ \text{EP}}$ is the event plane angle

Additional subevents from tracks not pointing at FHCal: **Tp:** p; 0.4<y<0.6; 0.2 < p_T < 2 GeV/c; w=1/eff **Tπ:** π-; 0.2<y<0.8; 0.1 < p_T < 0.5 GeV/c; w=1/eff **T-:** all negative; 1.0<η<2.0; 0.1 < p_T < 0.5 GeV/c; w=1/eff²³

Flow methods for v_n calculation

Tested in HADES:

M Mamaev et al 2020 PPNuclei 53, 277–281 M Mamaev et al 2020 J. Phys.: Conf. Ser. 1690 012122

Scalar product (SP) method:

$$v_1 = rac{\langle u_1 Q_1^{F1}
angle}{R_1^{F1}} \qquad v_2 = rac{\langle u_2 Q_1^{F1} Q_1^{F3}
angle}{R_1^{F1} R_1^{F3}}$$

Where R_1 is the resolution correction factor

$$R_1^{F1}=\langle \cos(\Psi_1^{F1}-\Psi_1^{RP})
angle$$

Symbol "F2(F1,F3)" means R₁ calculated via (3S resolution):

$$R_1^{F2(F1,F3)} = rac{\sqrt{\langle Q_1^{F2}Q_1^{F1}
angle \langle Q_1^{F2}Q_1^{F3}
angle}}{\sqrt{\langle Q_1^{F1}Q_1^{F3}
angle}}$$

Method helps to eliminate non-flow Using 2-subevents doesn't

Symbol "F2{Tp}(F1,F3)" means R₁ calculated via (4S resolution):

$$R_1^{F2\{Tp\}(F1,F3)} = \langle Q_1^{F2}Q_1^{Tp}
angle rac{\sqrt{\langle Q_1^{F1}Q_1^{F3}
angle}}{\sqrt{\langle Q_1^{Tp}Q_1^{F1}
angle \langle Q_1^{Tp}Q_1^{F3}
angle}}$$

Resolution is lower for higher energies due to lower v_1

Directed and elliptic flow in Xe+Cs (JAM)

Good agreement between reconstructed and pure model data for all three energies