Centrality determination method in nuclear collisions by using hadron calorimeter

Idrisov Dim, Oleg Golosov, Arkadiy Taranenko

This work is supported by: the Special Purpose Funding Programme within the NICA Megascience Project in 2023

The XXVII International Scientific Conference of Young Scientists and Specialists (AYSS-2023), JINR, Dubna

01/11/2023

Initial geometry of HIC

- Evolution of matter produced in heavy-ion collisions depends on its initial geometry
- Centrality procedure maps initial geometry parameters with measurable quantities
- This allows comparison of the future MPD results with the data from other experiments (STAR BES, NA49/NA61) and theoretical models

Collision geometry

- Models: Impact parameter b
- Measurable quantities (Experiment):
- Multiplicity or transverse energy of the produced particles
- Energy of the spectators

NA61/SHINE experimental setup

- Subsystems
 - Multiplicity: TPCs
 - Spectators energy: PSD •

Data samples:

- Pb-Pb @ p_{beam} = 13A GeV/c, (2016 physics run)
- DCM-QGSM-SMM x Geant4 (rec. data)

M.Baznat et al. PPNL 17 (2020) 3, 303

The Bayesian inversion method (Γ-fit): main assumptions

Relation between energy E and impact parameter b is

defined by the fluctuation kernel:

$$P(E \mid c_b) = \frac{1}{\Gamma(k(c_b))\theta^2} E^{k(c_b)-1} e^{-E/\theta}$$

$$c_b = \int_{0}^{b} P(b')db'$$
 – centrality based on
impact parameter

$$\theta = \frac{D(E)}{\langle E \rangle}, \quad k = \frac{\langle E \rangle}{\theta}$$

 $\langle E \rangle$, D(E) – average value and variance of energy

$$\langle E \rangle = \mu_1 \langle E'(c_b) \rangle + \lambda_1, \quad D(E) = \mu_2 D(E'(c_b))$$

Three fit parameters μ_1, μ_2, λ_1

 $\langle E'(c_b) \rangle$, $D(E'(c_b))$ - can be approximated by polynomial

$$\langle E'(c_b) \rangle = \sum_{j=1}^{8} a_j c_b^j, \quad D(E'(c_b)) = \sum_{j=1}^{6} b_j c_b^j$$

Dependence of the average value and variance of energy on centrality

The average value and dispersion of energy from the DCM-QGSM-SMM model are well described by polynomials

Reconstruction of *b*

- Normalized energy distribution P(E) $P(E) = \int_{0}^{1} P(E \mid c_{b}) dc_{b}$
- Find probability of *b* for fixed range of E using Bayes' theorem:

$$P(b \mid E_{1} < E < E_{2}) = P(b) \frac{\int_{E_{1}}^{E_{2}} P(b \mid E) dE}{\int_{E_{1}}^{E_{2}} P(E) dE}$$

- The Bayesian inversion method consists of 2 steps:
- -Fit normalized energy distribution with P(E)-Construct P(b|E) using Bayes' theorem with

parameters from the fit

Good agreement between fit and data in wide energy range

Fit results for NA61

The method reproduces the energy distribution well. The difference in the peripheral region is due to the trigger efficiency

Centrality determination in the FIX-target experiments

The cross section as a function of Ntracks for minimum bias (blue symbols) and central (PT3 trigger, green symbols) data in comparison with a fit using the Glauber MC model (red histogram).

In order to take additional, non-linear multiplicity dependent inefficiencies into account, a phenomenological efficiency function $\varepsilon(\alpha) = 1 - \alpha \cdot Npart^2$ was used. This function models the efficiency for charged tracks obtained from simulated data with the transport model UrQMD and GEANT3.3 for detailed simulation of the detector response

https://arxiv.org/abs/1712.07993

MC-Glauber based centrality framework

Comparison with MC-Glauber fit

increases in the peripheral region

Summary and outlook

- A new approach was proposed for centrality determination with energy of spectators
- Centrality determination procedure was tested on NA61/SHINE data
- The results are in good agreement with the classical approach based on the MC-Glauber method
- Investigate the effectiveness of the method at higher energies
- Modification of the proposed method for use at BM@N and MPD experiments
- Comparison with other methods for determining centrality

Thank you for your attention!

Correlation between energy and impact parameter(Fit)

NA61/SHINE experimental setup

PSD detector layout

MC-Glauber based centrality framework

This centrality procedure was used in CBM, NA49, and NA61/SHINE: I. Segal, et al., J.Phys.Conf.Ser. 1690 (2020) 1, 012107 Implemantation for MPD: <u>https://github.com/FlowNICA/CentralityFramework</u> P. Parfenov, et al., Particles. 2021; 4(2):275-287

Comparison with MC-Glauber fit

The layout of the NA61/SHINE experimental setup

Data samples:

- Pb-Pb @ p_{beam} = 13A GeV/c
- data from 2016 physics run
- DCM-QGSM-SMM x Geant4

Subsystems

- Multiplicity: TPCs
- Spectators energy: PSD

Correlation between energy and impact parameter

The results of simulations of fully reconstructed data show a strong correlation between the energy deposed in the PSD detector and the impact parameter

Impact parameter distribution in centrality classes

Initial geometry of HIC

- Evolution of matter produced in heavy-ion collisions depend on its initial geometry
- Centrality procedure maps initial geometry parameters with measurable quantities
- This allows comparison of the future MPD results with the data from other experiments (STAR BES, NA49/NA61 scans) and theoretical models

Collision geometry

• Models:

Impact parameter b

- Measurable quantities (Experiment):
- Multiplicity or transverse energy of the produced particles
- Energy of the spectators

Ann.Rev.Nucl.Part.Sci. 57 (2007) 205-243