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results of the HGND prototype data analysis are presented.

The High Granular Neutron Time-of-Flight Detector (HGND) at the BM@N experiment will be used for measurement of neutrons produced in nucleus-nucleus collisions. For the first time, the
prototype of the HGND was used in Xe+Csl at 3.0 and 3.8 AGeV run at the BM@N. The multilayer structure (absorber/scintillator) of the detector makes it possible to identify and measure the
energies of neutrons produced in nucleus-nucleus collisions. The online real-time monitoring system recently developed and used for the HGND prototype is discussed. Additionally, the preliminary

BM@N experiment

Fig.1. Scheme of the BM@N
setup in the Xe beam run.

The BM@N (Baryonic Matter at Nuclotron) experiment is aimed at studying nuclear matter during the
interaction of relativistic heavy ion beams with fixed targets in the energy range up to 4.5 AGeV, which is
intermediate between experiments at the SIS-18 and NICA/FAIR facilities.

Main objectives of the BM@N experiment:

= Study of the QCD diagram at high baryon densities

Study of the formation of multi-strange hyperons

Search for hypernuclei in nucleus-nucleus collisions

Study of the azimuthal asymmetry of charged particle yields in collisions of heavy nuclei.

The EoS establishes the relationship between pressure, density, energy, temperature and the symmetry
energy:

EA(p,8) = EA(p,0) + E,y(p) - 82+ O(87)
The symmetry energy term characterizes the isospin asymmetry of nuclear matter:

6 = (p.—p,)/p

The ratio of the directed and elliptic neutron flow to corresponding flow of protons is a sensitive
observable of the symmetry energy contribution to the EoS of high density nuclear matter.
To measure yields and flow of neutrons at the BM@N a new High Granular Neutron Time-of-Flight
Detector (HGND) is now developed and constructed.
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is shown in Fig.1, where the HGND prototype is labeled 21.
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For the first time, the HGND prototype was used in Xe+Csl at 3.8 and 3.0 AGeV run. The BM@N setup
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High Granular Neutron Time-of-Flight Detector (HGND) prototype
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15t (electromagnetic) part:

5 layers: Pb (8mm) + Scint. (25mm) + PCB + air
« 2" (hadronic) part:
9 layers: Cu (30mm) + Scint. (25mm) + PCB + air
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To calculate the time resolution of an individual cell, it is
necessary to perform a selection — hits in 4 consecutive layers:
— 3 of which are used for calculations.
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T3-T2 (VETO) Chanel #5 4-3 layers

Time-amplitude correction of signals made it possible
to get rid of the dependence of time on signal
amplitude, which improved the time resolution by ~2.4
times.
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Fraction of y-ev. in single individual cells Fraction of y-ev. in full HGND prototype (all cells)
Cell 1 Cell 2 Cell 3 .
(layer 3 0.0092 % 0.0097 % 0.173 % .
didn’t work) | £0.0009 % +0.0009 % .
Ceifd Celf 5 Celf6 ~ 15 times more than in one cell
0.0202 % 0.0084 % 0.0099 %
+0.0013 % +0.0008 % +0.0009 % 8
Cell 7 Cell 8 Cell 9 Comparable to simulation (0.1-0.2%) 8
0.0221 % 0.0118 % 0.0102 %
+0.0014 % +0.0010 % +0.0009 %
. ® Online monitoring of the HGND prototype was developed and used to track its response in real
Conclusions
time in the Xe run of BM@N
e Time-amplitude correction of signals improved the time resolution by 2.4 times
e The average time resolution of cells was 134429 ps
® The number of events with y-quanta was 0.173%, which is comparable to simulation
® The energy spectrum of neutrons was reconstructed for 2 positions of HGND prototype
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Estimation of the energy spectrum of neutrons

Criteria for selecting events with neutrons:

1 Xe ion, central & semi-central collisions
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