THE EXTRACTION SYSTEM ADAPTATION FOR MSC230 CYCLOTRON FINAL ENGINEERING DESIGN

Leonid Sedov, Dmitry Popov, Ivan Lyapin, Semion Gurskiy (DLNP JINR)

STRUCTURE OF MY TALK

- I. A few words about the MSC230 project
- 2. Overview of the beam extraction system
 - Electrostatic deflector
 - Magnetic channels MCI and MC2
- 3. Conclusion and further plans

MSC230 PROJECT

Accelerated Particles	Protons
Magnet Type	Compact, SC coil, warm yoke, B≈1.5 T
Number of Sectors	4
Number of RF Cavities	4
Ion Source	Internal, PIG
Final Energy	230 MeV
Number of Turns	600

Cyclotron's interiors

MSC230 PROJECT

Cyclotron's VFX-modelled appearance

MAIN ELEMENTS OF THE EXTRACTION SYSTEM

NEW MAGNET VS OLD MAGNET

Before

After

ELECTROSTATIC DEFLECTOR

CALCULATION METHODS

The modelling and testing was perfomed via CST Studio Suite functions. Mesh cells number for "flat" models is about 14000 each with doubled accuracy inside the device.

CALCULATION METHODS

Three options of field values were calculated:

- I. <u>EI</u>: Mean/ext value at the septum-to-coating mounting point;
- 2. <u>E2</u>: Mean/ext value at the length between electrode and low-radius septum mounting surface;
- 3. <u>W</u>: Mean value of energy density in the space of deflector.

The tricky low-radius surface

INITIAL MODEL

Electric field values' graphic interpretation in the initial model, both on Y and X axes.

MODIFIED MODEL

Changes made:

- Asymmetrical electrode shape with bigger radii in the working side of the deflector
- 2. Narrower septum mounting surface with still larger radius.

	Initial model	Modified model
<u>Elmax</u> , kV/mm	6,79	4,16
<u>E1mean</u> , kV/mm	5,37	3,75
<u>E2max</u> , kV/mm	9,36	8,54
<u>E2mean</u> , kV/mm	E2mean, kV/mm 7,11	
<u>W</u> , J/m^3	72,733	69,767

Electric field value on the vertical axis in the modified model

MODELS' COMPARISON: Y AXIS

INITIAL

MODIFIED

MODELS' COMPARISON: X AXIS

INITIAL

3D MODELLING

Expected trajectory – based 3D model overview

BEAM SIMULATION

Picture I (below). Beam at the exit of the deflector. Device is turned on with 35 kV potential.

Picture 2 (above). Full beam absorption at less than $\frac{1}{2}$ device length when turned off.

MAGNETIC CHANNELS

THE LOCATION OF MCS ALONG BEAM TRAJECTORY WITH RELATION TO THE REST OF THE MAGNET.

The trajectory intervals to deploy MCs around

FIELD DISTRIBUTION & REQUIREMENTS.

	MCI	MC2
Aperture	I0 mm	10 mm
Gradient	180 Gs/mm	120 Gs/mm
Bz shift	-1900 Gs	0 Gs
Bz mean	2.87 T	I.064 T

Vertical field on MCI trajectory

MC DESIGN

MCI

The cross section of the MCI centered around main particle.

MCI

MCI gradient.

Gradient	Gs/mm
min	168
max	184
mean	181

MC2

The cross section of the MC2 centered around main particle.

MC2

MC2 gradient 20 mm aperture

MC2 Bz impact

MC2 gradient 10 mm aperture.

Gradient	Gs/mm
min	118
max	124
mean	121.5

CONCLUSION AND FURTHER PLANS

- The deflector construction was optimized to fit the cyclotron geometry and minimize voltage breakdowns while maintaining the same efficiency;
- The magnetic channel designs were adjusted to reach the target field decrease and harmonics suppression values;
- It is planned to imply mentioned changes during the standtesting and, if successful, production stage.

THANK YOU FOR YOUR ATTENTION!