The XXVII International Scientific Conference of Young Scientists and Specialists

Theory of neutrino oscillations

Dmitry V.Naumov

Natural units

Quantum mechanics
Special Relativity

$$
\begin{aligned}
E & =\hbar \omega \\
E^{2} & =\mathbf{p}^{2} \mathbf{c}^{2}+\mathbf{m}^{2} \mathbf{c}^{4}
\end{aligned}
$$

$$
\hbar=c=1
$$

[energy] $=[$ momentum $]=[$ mass $]$
[time] $=[$ coordinate $]=[\text { mass }]^{-1}$
$[$ orbital moment $]=[$ spin $]=[\text { mass }]^{0}=1$

Natural units

$$
\hbar=c=1
$$

[energy] $=[$ momentum $]=[$ mass $]$
[time] $=[$ coordinate $]=[\text { mass }]^{-1}$
[orbital moment $]=[$ spin $]=[\text { mass }]^{0}=1$

Energy measured in electron-volt (eV).

$$
\begin{array}{lll}
\mathrm{eV} \text { to } & \mathrm{cm}^{-1} & \hbar c=1=2 \cdot 10^{-5} \cdot \mathrm{eV} \cdot \mathrm{~cm} \\
\mathrm{eV} \text { to } & \mathrm{s}^{-1} & \hbar=1=\frac{2}{3} \cdot 10^{-15} \cdot \mathrm{eV} \cdot \mathrm{~s}
\end{array}
$$

$$
\mathrm{keV}=10^{3} \mathrm{eV}
$$

$$
\mathrm{MeV}=10^{6} \mathrm{eV}
$$

$$
\mathrm{GeV}=10^{9} \mathrm{eV}
$$

Three lepton numbers

Объединенный

Neutrino properties

O Zero electric charge

O Fermion. Spin $=1 / 2(\cdot \hbar=1)$

O Known three types $\nu_{1}, \nu_{2}, \nu_{3}$ and their anti-particles $\bar{\nu}_{1}, \bar{\nu}_{2}, \bar{\nu}_{3}$ with definite masses. Also, their flavor mixtures $\nu_{e}(1956), \nu_{\mu}(1962), \nu_{\tau}$ (2000)

O Neutrino participates in weak and gravitational interactions

O Weak interactions break parity transformation $(\mathbf{r} \rightarrow-\mathbf{r})$

Standard Model (SM)

Follow for a dedicated lecture by A. Bednyakov

Sheldon Glashow

Steven Weinberg

Lepton numbers in the SM

OLepton numbers are conserved for massless neutrino

$$
\begin{array}{lll}
\binom{\nu_{e}}{e} & \binom{\nu_{\mu}}{\mu} & \binom{\nu_{\tau}}{\tau} \\
L_{e}=1 & L_{\mu}=1 & L_{\tau}=1
\end{array}
$$

OPossible:

$$
\nu_{e}+n \rightarrow p+e^{-}
$$

ONot possible:

$$
\nu_{\mu}+n \rightarrow p+e^{-}
$$

Massive Neutrino in the SM

OThree lepton doublets interact with W-field

$$
\binom{\nu_{1}}{e}_{L} \quad\binom{\nu_{2}}{\mu}_{L} \quad\binom{\nu_{3}}{\tau}_{L}
$$

○The interaction amplitude $\mathscr{A} \propto \frac{g}{2 \sqrt{2}} V_{\alpha i}^{*}$ for ν_{i} and $\ell_{\alpha}, \alpha=(e, \mu, \tau)$
OPossible processes:

$$
\begin{aligned}
& e+W^{-} \rightarrow \nu_{i} \propto V_{e i}^{*} \\
& \mu+W^{-} \rightarrow \nu_{i} \propto V_{\mu i}^{*} \\
& \tau+W^{-} \rightarrow \nu_{i} \propto V_{\tau i}^{*}
\end{aligned}
$$

Neutrino in the Standard Model

$\mathrm{O}^{\text {The interaction amplitude } \mathscr{A} \propto \frac{g}{2 \sqrt{2}} V_{\alpha i}^{*} \text { for } \nu_{i} \text { and } \ell_{\alpha}, ~}$
ONine numbers $V_{\alpha i}^{*}$ make unitary lepton mixing matrix Pontecorvo-Maki-Nakagawa-Sakata

$$
\left(\begin{array}{ccc}
V_{e 1}^{*} & V_{e 2}^{*} & V_{e 3}^{*} \\
V_{\mu 1}^{*} & V_{\mu 2}^{*} & V_{\mu 3}^{*} \\
V_{\tau 1}^{*} & V_{\tau 2}^{*} & V_{\tau 3}^{*}
\end{array}\right)
$$

${ }^{\circ}$ Non-diagonal V and differing masses m_{i} lead to neutrino oscillation macroscopic display of quantum world

Neutrino oscillations violate lepton numbers

ONot possible:

OPeriodically possible:

Production

Detection

A bit of history of neutrino oscillations

OFirst idea proposed by Bruno Pontecorvo in 1957:

- Suggested $\nu \leftrightarrow \bar{\nu}$ oscillations based on analogy with $K^{0} \leftrightarrow \overline{K^{0}}$

OFlavor transitions first considered by Maki-Nakagawa-Sakata in 1962

- Suggested idea of mixing and $\nu_{e} \leftrightarrow \nu_{\mu}$ oscillations

Z. Maki (1929-2005)

M. Nakagawa (1932-2001)

S. Sakata (1911-1970)

A bit of history of neutrino oscillations

O $\nu_{e} \leftrightarrow \nu_{\mu}$ oscillations considered by Pontecorvo in 1967: - Hypotheses about possible mechanisms
 - Hypothesis about solar neutrino deficit (before the experiment!)

O First theory for $\nu_{e} \leftrightarrow \nu_{\mu}$ oscillations developed by Gribov and Pontecorvo in 1969.

O Neutrino oscillations firmly discovered experimentally with: solar, reactor, accelerator and atmospheric neutrino. NP in 2015

В формулах, приведенных на рис.3, m_{e} - масса электрона, появление которой во вкладах диаграмм более или менее произвольно, и Λ - параметр обре-
 зания [20], который предположительно будет взят равным 100 ГэВ во всех случаях, когда взаимодействие имеет место только между лептонами, и равным массе нуклона, когда во взаимодействии участвуют адроны (например, диаграмма e рис.3). Несмотря на то, что только что сказанное в самом лучшем случае что сказанное в самом лучшем случае
крайне грубо, а в самом худшем — совкрайне грубо, а в самом худшем - сов-
сем неправильно, я буду продолжать сем неправильно, я буду продолжаяв циях. Здесь можно дополнить, что способ нахождения нарушения лептонного заряда, основанный на осцилляции $\bar{v} \rightleftarrows \vee$, является, в принципе, более чувствительным, чем другие методы. При-

Рис.3. Некоторые возможные диаграммы и нх вклады. $G=10^{-5} / M_{p}^{2}$ - константа слабого взаимодействия, M_{p} - масса протона, F - константа нового взаимодействия, m вклад данной диаграммы в массу нейтрино, $\mu=\left|m_{\mathrm{v}}-m_{\mathrm{v}}\right|-$ масса перехода $\vee \rightleftarrows \overline{\mathrm{v}}$, n_{e} - масса электрона, Λ - параметр обрезания

чина этого в том, что период осцилляций обратно пропорционален первой степени матричного элемента перехода, в то время как скорости распадов и реакций пропорциональны его квадрату.

From B. Pontecorvo paper (1957)

What is neutrino oscillation?

What is neutrino oscillation?

OPhenomenon of lepton number transformation:

- Periodic (oscillation!), quasi-periodic (in vacuum)
- Complicated function (in matter)

OWe explore neutrino oscillations tailored to different expertise levels:

- Drivers and Pedestrians
- Life Scientists
- Experimental Physicists
- Mechanical Engineers
- Quantum Mechanics Interested Learners
- Quantum Field Theorists

```
Neutrino oscillation:
    - Not very good terminology.
    - Lepton number oscillation (or
    transformation) better
```


Neutrino oscillations for drivers and pedestrians

Normal particle

Neutrino

Neutrino oscillations for drivers and pedestrians

Neutrino

Probability to meet
passenger car

Neutrino oscillations for drivers and pedestrians

Neutrino

Probability to meet
passenger car

Neutrino oscillations for drivers and pedestrians

Neutrino

Probability to meet
passenger car

18

Neutrino oscillations for Life Scientists

Neutrino oscillations for experimental physicists

O Prepare ν_{e} beam (as an example)

O Place your detector at an appropriate distance to measure ν_{e} deficit and/or ν_{μ} appearance

O Use formula $P(L / E)=1-\sin ^{2} 2 \theta \cdot \sin ^{2} \frac{\Delta m^{2}}{4} \frac{L}{E}$ for oscillation survival probability to measure θ and Δm^{2}

Neutrino oscillations for experimental physicists

OAssume two massive neutrino states ν_{1}, ν_{2}. Then,

$$
\begin{aligned}
& \left|\nu_{e}\right\rangle=\cos \theta \cdot\left|\nu_{1}\right\rangle-\sin \theta \cdot\left|\nu_{2}\right\rangle \\
& \left|\nu_{\mu}\right\rangle=\sin \theta \cdot\left|\nu_{1}\right\rangle+\cos \theta \cdot\left|\nu_{2}\right\rangle
\end{aligned}
$$

,

$$
\nu_{e} \text { source }
$$

Daya Bay discovered non-zero θ_{13}

Oscillation distance

Neutrino oscillations for mechanical engineers

O Consider two coupled pendulums
O Potential energy

$$
\begin{aligned}
V & =\frac{m}{2}\left(\frac{g}{l_{1}} x_{1}^{2}+\frac{g}{l_{2}} x_{2}^{2}+\frac{k}{m}\left(x_{1}-x_{2}\right)^{2}\right) \\
& =\frac{m}{2}\left(x_{1}, x_{2}\right)\left(\begin{array}{cc}
\frac{g}{l_{1}}+\frac{k}{m} & -\frac{k}{m} \\
-\frac{k}{m} & \frac{g}{l_{2}}+\frac{k}{m}
\end{array}\right)\binom{x_{1}}{x_{2}}
\end{aligned}
$$

O Change variables to diagonalize V

$$
\binom{x_{1}}{x_{2}}=\left(\begin{array}{cc}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi
\end{array}\right)\binom{x_{1}^{\prime}}{x_{2}^{\prime}} \quad V=\frac{m}{2}\left(x_{1}^{\prime}, x_{2}^{\prime}\right)\left(\begin{array}{cc}
\omega_{1}^{2} & 0 \\
0 & \omega_{2}^{2}
\end{array}\right)\binom{x_{1}^{\prime}}{x_{2}^{\prime}}
$$

Neutrino oscillations for mechanical engineers

ONormal mode. Small frequency

ONormal mode. Large frequency

23

Neutrino oscillations for mechanical engineers

O Begin with blue pendulum given total energy E_{0}

O Energy oscillates between the pendulums

$$
\frac{E(t)}{E_{0}}=1-\underbrace{\frac{4 r}{(1+r)^{2}}}_{\sin ^{2} 2 \theta} \cdot \sin ^{2} \frac{\Delta \omega \cdot t}{2}
$$

O Great analogy with neutrino oscillations

$$
\begin{aligned}
& P(L / E)=1-\sin ^{2} 2 \theta \cdot \sin ^{2} \frac{\Delta E \cdot L}{2} \\
& \sin ^{2} 2 \theta=\frac{4 r}{(1+r)^{2}} \quad \Delta \omega=\Delta E
\end{aligned}
$$

$$
\Delta \omega=\omega_{2}-\omega_{1} \quad r=m_{2} / m_{1}
$$

Neutrino oscillations for Quantum Mechanics Learners

O Consider quantum system to be in a pure state $\left|\Psi_{i}\right\rangle$ with definite energy E_{i}. Its time evolution:

$$
\left|\Psi_{i}(t)\right\rangle=e^{-i E_{i} t}\left|\Psi_{i}(0)\right\rangle
$$

O The wave function oscillates but the system remains in the same state: survival probability=1

○ Consider a superposition $|\Psi\rangle=a \cdot\left|\Psi_{1}\right\rangle+b \cdot\left|\Psi_{2}\right\rangle$. Its time evolution:

$$
|\Psi(t)\rangle=a \cdot e^{-i E_{1} t}\left|\Psi_{1}(0)\right\rangle+b e^{-i E_{2} t} \cdot\left|\Psi_{2}(0)\right\rangle
$$

$$
\begin{equation*}
\left(|a|^{2}+|b|^{2}=1\right) \tag{25}
\end{equation*}
$$

Neutrino oscillations for Quantum Mechanics Learners

O Consider a superposition $|\Psi\rangle=a \cdot\left|\Psi_{1}\right\rangle+b \cdot\left|\Psi_{2}\right\rangle$. Its time evolution:

$$
|\Psi(t)\rangle=a \cdot e^{-i E_{1} t}\left|\Psi_{1}(0)\right\rangle+b e^{-i E_{2} t} \cdot\left|\Psi_{2}(0)\right\rangle
$$

Survival probability after time t reads:

Neutrino oscillations for Quantum Field Theorists

O Let us draft a Feynman diagram for lepton number violating process

Muon

Neutrino oscillations for Quantum Field Theorists

Neutrino oscillations for Quantum Field Theorists

$$
\begin{aligned}
& |\mathscr{A}|^{2} \propto \frac{1}{L^{2}}\left|\sum_{i} V_{e i}^{*} V_{\mu i} e^{-i \frac{L m_{i}^{2}}{2 E}}\right|^{2} \\
& P_{e \mu}(L / E)=\sum_{i, j} V_{e i}^{*} V_{\mu j}^{*} V_{\mu i} V_{e j} e^{-i L \frac{\Delta m_{i}^{2}}{2 E}}
\end{aligned}
$$

O(Quasi) periodic dependence («oscillations») of the probability
ONon-zero non-diagonal $V_{\alpha i}$ required and $\Delta m_{i j}^{2} \equiv m_{i}^{2}-m_{j}^{2} \neq 0$
OWhat is oscillating? The lepton flavor $L_{e} \leftrightarrow L_{\mu}$

Three neutrino oscillations in vacuum

$\left(\begin{array}{ccc}V_{e 1}^{*} & V_{c 2}^{*} & V_{e 3}^{*} \\ V_{\mu 1}^{*} & V_{\mu 2}^{*} & V_{\mu 3}^{*} \\ V_{\tau 1}^{*} & V_{\tau 2}^{*} & V_{\tau 3}^{*}\end{array}\right)=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23}\end{array}\right)\left(\begin{array}{ccc}\cos \theta_{13} & 0 & \sin \theta_{13} e^{-i \delta} \\ 0 & 1 & \\ -\sin \theta_{13} e^{i \delta} & 0 & \cos \theta_{13}\end{array}\right)\left(\begin{array}{ccc}\cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1\end{array}\right)$

O Three mixing angles $\theta_{12}, \theta_{13}, \theta_{23}$
O One phase: δ.

- If $\delta \neq 0, \pi$: $\mathbf{C P}$ violation, which can be observed as:

$$
P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right) \neq P\left(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}\right), \text { for } \alpha \neq \beta
$$

Three neutrino oscillations in vacuum. Experimental summary

$$
\left(\begin{array}{ccc}
V_{e 1}^{*} & V_{e 2}^{*} & V_{e 3}^{*} \\
V_{\mu 1}^{*} & V_{\mu 2}^{*} & V_{\mu 3}^{*} \\
V_{\tau 1}^{*} & V_{\tau 2}^{*} & V_{\tau 3}^{*}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta_{23} & \sin \theta_{23} \\
0 & -\sin \theta_{23} & \cos \theta_{23}
\end{array}\right)\left(\begin{array}{ccc}
\cos \theta_{13} & 0 & \sin \theta_{13} e^{-i \delta} \\
0 & 1 & \\
-\sin \theta_{13} e^{i \delta} & 0 & \cos \theta_{13}
\end{array}\right)\left(\begin{array}{ccc}
\cos \theta_{12} & \sin \theta_{12} & 0 \\
-\sin \theta_{12} & \cos \theta_{12} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

O Solar and reactor neutrino: $\theta_{12}, \Delta m_{21}^{2}$
O Atmospheric and accelerator neutrino: $\theta_{23}, \Delta m_{32}^{2}$
O Reactor neutrino at 2 km (Daya Bay, RENO, DC): $\theta_{13}, \Delta m_{32}^{2}$

$$
\begin{gathered}
\Delta m_{21}^{2} \approx 7.5 \cdot 10^{-5} \mathrm{eV}^{2} \\
\left|\Delta m_{32}^{2}\right| \approx 2.4 \cdot 10^{-3} \mathrm{eV}^{2}
\end{gathered}
$$

O Neutrino mass measurements:

$$
\begin{aligned}
\Delta m_{21}^{2} & =m_{2}^{2}-m_{1}^{2}, m_{2}^{2}=m_{1}^{2}+\Delta m_{21}^{2} \\
m_{2} & =\sqrt{m_{1}^{2}+\Delta m_{21}^{2}} \geq \sqrt{\Delta m_{21}^{2}} \approx 0.01 \mathrm{eV}
\end{aligned}
$$

Normal ordering

$$
\begin{aligned}
& m_{3}=\sqrt{m_{2}^{2}+\left|\Delta m_{32}^{2}\right|} \geq 0.05 \mathrm{eV}, m_{3}>m_{2} \\
& m_{2}=\sqrt{m_{3}^{2}+\left|\Delta m_{32}^{2}\right|} \geq 0.05 \mathrm{eV}, m_{2}>m_{3}
\end{aligned}
$$

Inverse ordering

Neutrino oscillations in matter

If matter matters?

Weak interactions are very weak

If matter matters?

Weak interactions are very weak
O If neutrino interacts so weakly, then Sun is just a transparent medium.

- Why it can matter?

O Glass or drop of water are also transparent media ... but they do matter on light propagation because of refraction

Do you understand light refraction?

Check yourself

O Light slows down in matter because:

- It is absorbed by atoms and re-emitted with some delay
- It is scattered by atoms and takes a longer path
- It experiences a friction

Do you understand light refraction?

Check yourself

O Light slows down in matter because:
Nit is absorbed by atoms and re-emitted with some delay

- It is scattered by atoms and takes a longer path
- It experiences a friction

Re-emission does not keep the original direction

Do you understand light refraction?

Check yourself

O Light slows down in matter because:

It is absorbed by atoms and re-emitted with some delay
 It is scattered by atoms and takes a longer path
 - It experiences a friction

More material —> wider the beam

Do you understand light refraction?

Check yourself

O Light slows down in matter because:
It is absorbed by atoms and re-emitted with some delay
It is scattered by atoms and takes a longer path
It experiences a friction

Just NO!

Do you understand light refraction?

Check yourself

O Light slows down in matter because:

- Incident electromagnetic wave forces electrons to vibrate and emit the secondary wave
- Both the incident and the secondary waves move at the speed of light.
- The secondary wave is delayed in phase by about $\pi / 2$ and the front of resulting wave moves slower

Refraction index

O These complex phenomena can be conveniently described by a refraction index n O Consider a wave $\cos (\omega \cdot t-k \cdot x)$ in vacuum.

- The phase velocity can be found from $\omega \cdot t-k \cdot x=0$ as

$$
c=\frac{x}{t}=\frac{\omega}{k}
$$

O Consider a wave $\cos (\omega \cdot t-n \cdot k \cdot x)$ in matter.

- The phase velocity can be found from $\omega \cdot t-n \cdot k \cdot x=0$ as

$$
v=\frac{x}{t}=\frac{\omega}{n \cdot k}=\frac{c}{n}
$$

Refraction index

O Microscopic consideration yields

$$
n=1+\frac{V}{k}
$$

Where V is a photon-matter potential due to $\gamma+e \rightarrow \gamma+e$

- Neutrino also experiences the refraction in matter due to $\nu_{e, \mu}+e \rightarrow \nu_{e, \mu}+e$

If matter matters? YES:

O Due to $\nu_{e}+e \rightarrow \nu_{e}+e$ reaction ν_{e} experience the potential (calculated in the SM)

$$
V=\sqrt{2} G_{F} n_{e} \approx 10^{-10}-10^{-11} \text { ЭВ }
$$

O The potential is negligibly small compared to the neutrino energy

$$
V \ll E_{\nu} \simeq(0.1-10) \cdot 10^{6} \mathrm{eV}
$$

O However it is comparable with

$$
\Delta E=\frac{\Delta m^{2}}{2 E} \simeq \frac{10^{-5} \mathrm{eV}^{2}}{10^{6} \mathrm{eV}}=10^{-11} \mathrm{eV}
$$

O Sun refracts neutrino like a glass ball refracts the light

Neutrino oscillations in matter

O ν_{μ} do not feel the electrons (via W exchange)
O ν_{e} can pass without interactions with electrons
O ν_{e} can interact with electrons in $\nu_{e}+e \rightarrow \nu_{e}+e$

Neutrino oscillations in matter

O Sun refracts neutrino like a glass ball refracts the light

Neutrino oscillations in matter

O Sun refracts neutrino like a glass ball refracts the light
O Refraction index for ν_{e}

$$
n_{\nu_{e}}=1-\sqrt{2} G_{F} n_{e} / E
$$

O Refraction index for ν_{μ}

$$
n_{\nu_{\mu}}=1
$$

O The difference in refraction indices for ν_{e} and ν_{μ} drastically changes the oscillation pattern

$$
n_{\nu_{e}}-n_{\nu_{\mu}}=-\sqrt{2} G_{F} n_{e} / E_{\nu}
$$

(Implicit) hypotheses

Of neutrino oscillation within plane wave model

○ A coherent superposition $\nu_{\alpha}=\sum_{i} V_{\alpha i}^{*} \nu_{i}$ is produced and interacted

O Quantum states $\left|\nu_{i}\right\rangle$ have definite momenta with $\delta p_{i}=0$
O Momenta of all $\left|\nu_{i}\right\rangle$ are the same $p_{1}=p_{2}=p_{3}=p$
O Neutrino are ultra-relativistic particles $\left|p_{i}\right| \gg m_{i}$
O Time t equals to the distance L :

$$
t=L
$$

(Implicit) hypotheses

Of neutrino oscillation within plane wave model

A coherent superposition $\nu_{\alpha}=\sum_{i} V_{\alpha i}^{*} \nu_{i}$ is produced and interacted
O Then, why massive neutrino ν_{i} are produced coherently, while charged leptons seem not? If charged leptons oscillate?

O In the SM charged leptons and neutrino fields are symmetric

$$
\mathscr{L}=-\frac{g}{2 \sqrt{2}} \sum_{\alpha=e, \mu, \tau} \sum_{i=1}^{3} V_{\alpha i} \underbrace{\ell_{\alpha} O^{\mu} \nu_{i} W_{\mu}+\text { эс }}_{\substack{\text { Lepton mixing matrix (not } \\ \text { neutrino mixing matrix!) }}}
$$

(Implicit) hypotheses

Of neutrino oscillation within plane wave model

Quantum states $\left|\nu_{i}\right\rangle$ have definite momenta with $\delta p_{i}=0$

- Then, position uncertainty reads: $\delta x_{\nu}=\frac{1}{\delta p_{\nu}}=\infty$

O What is the distance L in the oscillation formula then?

(Implicit) hypotheses

Of neutrino oscillation within plane wave model

Momenta of all $\left|\nu_{i}\right\rangle$ are the same $p_{1}=p_{2}=p_{3}=p$
O Breaks Lorentz invariance

O Contradicts to kinematics of decays

(Implicit) hypotheses

Of neutrino oscillation within plane wave model

Neutrino are ultra-relativistic particles $\left|p_{i}\right| \gg m_{i}$
O True for all experiments so far

O Not true for relic neutrinos

(Implicit) hypotheses

Of neutrino oscillation within plane wave model

Time t equals to the distance L :

$$
t=L
$$

○ Let us make it better $L=v t=\frac{p_{i}}{E_{\nu}} t$

$$
\varphi=E_{i} t-p_{i} L=E_{i} t-\frac{p_{i}^{2}}{E_{i}} t=\frac{E_{i}^{2}-p_{i}^{2}}{E_{i}} t=\frac{m_{i}^{2}}{E_{i}} t
$$

O The phase difference then:

$$
\varphi_{i j}=\varphi_{i}-\varphi_{j}=\frac{m_{i}^{2}-m_{j}^{2}}{E_{i}} t=2 \frac{m_{i}^{2}-m_{j}^{2}}{2 E_{i}} t
$$

O The phase difference is TWO times larger than the standard!

Resume

Plane wave model

\bigcirc A coherent superposition $\nu_{\alpha}=\sum_{i} V_{\alpha i}^{*} \nu_{i}$ is produced and interacted
\bigcirc Quantum states $\left|\nu_{i}\right\rangle$ have definite momenta with $\delta p_{i}=0$
0 Momenta of all $\left|\nu_{i}\right\rangle$ are the same $p_{1}=p_{2}=p_{3}=p$
\bigcirc Neutrino are ultra-relativistic particles $\left|p_{i}\right| \gg m_{i}$
O Time t equals to the distance L :

$$
t=L
$$

Wave packet model

Wave packet model

$$
|p\rangle \rightarrow \int \frac{d p}{2 \pi} g\left(p, P ; \sigma_{p}\right)|p\rangle
$$

Momentum space

Wave packet model

$$
|p\rangle \rightarrow \int \frac{d p}{2 \pi} g\left(p, P ; \sigma_{p}\right)|p\rangle
$$

Coordinate space

Wave packet model

$$
|p\rangle \rightarrow \int \frac{d p}{2 \pi} g\left(p, P ; \sigma_{p}\right)|p\rangle
$$

Wave packet model

$$
|p\rangle \rightarrow \int \frac{d p}{2 \pi} g\left(p, P ; \sigma_{p}\right)|p\rangle
$$

Wave packet disperses (ignore it here)

институт ядерных

Vacuum neutrino oscillations In wave packet model

Oscillation probability

Plane wave model

$$
P_{e \mu}(L / E)=1-\sin ^{2} 2 \theta \sin ^{2} \frac{\Delta m^{2} L}{4 E}
$$

Wave packet model

$$
P_{e \mu}(L / E)=1-\frac{1}{2} \sin ^{2} 2 \theta\left(1-\exp \left[-\left(L / L_{c o h}\right)^{2}-1 / 4\left(\Delta m^{2} / \sigma_{m^{2}}\right)\right] \cos \frac{\Delta m^{2} L}{2 E}\right)
$$

Resume

Plane wave model

\bigcirc A coherent superposition $\nu_{\alpha}=\sum_{i} V_{\alpha i}^{*} \nu_{i}$ is produced and interacted only if $\Delta m^{2} \ll \sigma_{m^{2}}$
O Quantum states $\left|\nu_{i}\right\rangle$ do not have definite momenta
O Momenta of all $\left|\nu_{i}\right\rangle$ are not the same
O Neutrino can be ultra-relativistic or non-relativistic particles
O Time t is not equal to the distance L :

$$
t=\frac{2 L}{\frac{1}{v_{1}}+\frac{1}{v_{2}}}
$$

Oscillation probability

In wave packet model

$$
P_{e \mu}(L / E)=1-\frac{1}{2} \sin ^{2} 2 \theta\left(1-\exp \left[-\left(L / L_{c o h}\right)^{2}-1 / 4\left(\Delta m^{2} / \sigma_{m^{2}}\right)\right] \cos \frac{\Delta m^{2} L}{2 E}\right)
$$

$$
L_{c o h}=L_{o s c} \frac{p}{\sqrt{2} \pi \sigma_{p}}
$$

Coherence length

$$
\sigma_{m^{2}}=2 \sqrt{2} p \sigma_{p}
$$

Uncertainty in mass ${ }^{2}$

Do charged leptons oscillate?

YES, in principle.
NO practically

Summary

Summary

 исследований

