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Natural units

ℏ = c = 1

E2 = p2c2 + m2c4 → p2 + m2
E = ℏω → ω

[energy] = [momentum] = [mass]

Special Relativity

Quantum mechanics

[time] = [coordinate] = [mass]−1

[orbital moment] = [spin] = [mass]0 = 1
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Natural units
ℏ = c = 1

Energy measured in electron-volt (eV).
 keV = 103 eV
 MeV = 106 eV
 GeV = 109 eV

ℏc = 1 = 2 ⋅ 10−5 ⋅  eV  ⋅  cm eV to  cm −1

eV to  s −1 ℏ = 1 =
2
3

⋅ 10−15 ⋅  eV  ⋅  s 
Question: dimension of ?E, B

[energy] = [momentum] = [mass]

[time] = [coordinate] = [mass]−1

[orbital moment] = [spin] = [mass]0 = 1
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Three lepton numbers

Reines Cowan

1956

νe νμ
Schwartz, 
Lederman, 
Steinberger

1962

ντ

2000

Collaboration DONUT
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Neutrino properties

Zero electric charge

Fermion. Spin = 1/2 (⋅ℏ = 1)

Known three types  and their anti-particles 
 with definite masses. Also, their flavor 

mixtures 

ν1, ν2, ν3
ν1, ν2, ν3

νe (1956) , νμ (1962) , ντ (2000) 

eV

0.01

0.05

0.15

Neutrino participates in weak and gravitational interactions

Weak interactions break parity transformation ( )r → − r



Standard Model (SM)
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Sheldon Glashow

Steven Weinberg
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Follow for a dedicated 
lecture by A. Bednyakov

× 3

× 8



Lepton numbers in the SM
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Lepton numbers are conserved for massless neutrino

(νe
e ) (νμ

μ ) (ντ
τ )

Le = 1 Lμ = 1 Lτ = 1
Possible:

νe + n → p + e−

Not possible:
νμ + n → p + e−



Massive Neutrino in the SM
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The interaction amplitude  for  and  𝒜 ∝
g

2 2
V*αi νi ℓα, α = (e, μ, τ)

Three lepton doublets interact with W-field

Possible processes:

(ν1
e )L (ν2

μ )L (ν3
τ )L

e + W− → νi ∝ V*ei
μ + W− → νi ∝ V*μi

τ + W− → νi ∝ V*τi
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Non-diagonal  and differing masses  lead to neutrino oscillation — 
macroscopic display of quantum world

V mi

Nine numbers  make unitary lepton mixing matrix Pontecorvo-Maki-Nakagawa-Sakata V*αi

V*e1 V*e2 V*e3

V*μ1 V*μ2 V*μ3

V*τ1 V*τ2 V*τ3

Neutrino in the Standard Model

The interaction amplitude  for  and  𝒜 ∝
g

2 2
V*αi νi ℓα



Neutrino oscillations violate 
lepton numbers
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Not possible:

νμ

Production 

νμ + n → p + e−

Detection 

Small distance 

Periodically possible:

νμ

Production 

νμ + n → p + e−

Detection 

Large distance 
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A bit of history of neutrino oscillations

First idea proposed by Bruno Pontecorvo in 1957: 
— Suggested   oscillations based on analogy with ν ↔ ν K0 ↔ K0

Flavor transitions first considered by Maki-Nakagawa-Sakata in 1962 
— Suggested idea of mixing and   oscillationsνe ↔ νμ

S. Sakata (1911-1970)Z. Maki (1929-2005) M. Nakagawa (1932-2001)
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A bit of history of neutrino oscillations

  oscillations considered by Pontecorvo in 1967: 
— Hypotheses about possible mechanisms 
— Hypothesis about solar neutrino deficit (before the 
experiment!)

νe ↔ νμ

From B. Pontecorvo paper (1957)

 First theory for  oscillations developed by 
Gribov and Pontecorvo in 1969.

νe ↔ νμ

 Neutrino oscillations firmly discovered experimentally 
with: solar, reactor, accelerator and atmospheric 
neutrino. NP in 2015



What is neutrino 
oscillation?

13
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What is neutrino oscillation?

Phenomenon of lepton number transformation: 
— Periodic (oscillation!), quasi-periodic (in vacuum) 
— Complicated function (in matter) 

Neutrino oscillation: 
— Not very good terminology. 
— Lepton number oscillation (or 
transformation) better

We explore neutrino oscillations tailored to different 
expertise levels: 
— Drivers and Pedestrians 
— Life Scientists 
— Experimental Physicists 
— Mechanical Engineers 
— Quantum Mechanics Interested Learners 
— Quantum Field Theorists

Apologies if you do not find yourself in the list!



Neutrino oscillations for 
drivers and pedestrians

15

Normal particle

Neutrino
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Neutrino oscillations for 
drivers and pedestrians

Probability to meet 
passenger car

Distance

Neutrino
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Neutrino

Distance

Probability to meet 
passenger car

Neutrino oscillations for 
drivers and pedestrians
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Neutrino oscillations for 
drivers and pedestrians

Neutrino

Probability to meet 
passenger car

Distance
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Neutrino oscillations for 
Life Scientists

Animation by Marina Mishchenko
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 Prepare  beam (as an example)νe

Neutrino oscillations for 
experimental physicists

 Place your detector at an appropriate distance to measure  deficit and/or 
appearance 

νe νμ

 Use formula  for oscillation survival 

probability to measure   and 

P(L/E) = 1−sin2 2θ ⋅ sin2 Δm2

4
L
E

θ Δm2
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Assume two massive neutrino states . Then,  
  

ν1, ν2
|νe⟩ = cos θ ⋅ |ν1⟩ − sin θ ⋅ |ν2⟩
|νμ⟩ = sin θ ⋅ |ν1⟩ + cos θ ⋅ |ν2⟩

Neutrino oscillations for 
experimental physicists

νe νeνμ

ν1ν2

  sourceνe   detectorνμ

 in phaseν1, ν2  in anti-phaseν1, ν2

Oscillation distanceDaya Bay discovered non-zero θ13

Follow lecture by M. Gonchar
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V =
m
2 ( g

l1
x2

1 +
g
l2

x2
2 +

k
m

(x1 − x2)2) Potential energy

 Change variables to diagonalize V

(x1
x2) = ( cos ϕ sin ϕ

−sin ϕ cos ϕ) (x′ 1

x′ 2) V =
m
2

(x′ 1, x′ 2)(ω2
1 0

0 ω2
2) (x′ 1

x′ 2)

Neutrino oscillations for 
mechanical engineers

 Consider two coupled pendulums

=
m
2

(x1, x2)

g
l1

+ k
m − k

m

− k
m

g
l2

+ k
m

(x1
x2)
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Normal mode. Small frequency

Normal mode. Large frequency

Neutrino oscillations for 
mechanical engineers

ν1

ν2
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 Begin with  blue pendulum given total energy E0

 Energy oscillates between the pendulums
E(t)
E0

= 1−
4r

(1 + r)2
⋅ sin2 Δω ⋅ t

2

Δω = ω2 − ω1 r = m2/m1

P(L/E) = 1−sin2 2θ ⋅ sin2 ΔE ⋅ L
2

sin2 2θ

}

Neutrino oscillations for 
mechanical engineers

 Great analogy with neutrino oscillations

sin2 2θ =
4r

(1 + r)2
Δω = ΔE

νeνμ
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 Consider quantum system to be in a pure state  with definite energy . Its time 
evolution: 

|Ψi⟩ Ei

|Ψi(t)⟩ = e−iEit |Ψi(0)⟩

Neutrino oscillations for 
Quantum Mechanics Learners

 The wave function oscillates but the system remains in the same state:  
survival probability=1

Hydrogen . Source: wikipediaψ410

 Consider a superposition .  
Its time evolution: 

|Ψ⟩ = a ⋅ |Ψ1⟩ + b ⋅ |Ψ2⟩

|Ψ(t)⟩ = a ⋅ e−iE1t |Ψ1(0)⟩ + be−iE2t ⋅ |Ψ2(0)⟩

( )|a |2 + |b |2 = 1
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Neutrino oscillations for 
Quantum Mechanics Learners

 Consider a superposition . Its time evolution: |Ψ⟩ = a ⋅ |Ψ1⟩ + b ⋅ |Ψ2⟩
|Ψ(t)⟩ = a ⋅ e−iE1t |Ψ1(0)⟩ + be−iE2t ⋅ |Ψ2(0)⟩

 Survival probability after time  reads: 

 

                                                 

t

P = |⟨Ψ(0) |Ψ(t)⟩ |2 = |a |2 ⋅ e−iE1t + |b |2 e−iE2t

2

= 1 − 4 |a |2 |b |2 sin2 (E1 − E2) ⋅ t
2



27

Neutrino oscillations for 
Quantum Field Theorists

 Let us draft a Feynman diagram for lepton number violating process

Electron Muon
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W−

e− V*ei νi𝒜 ∝ ∑
i

μ−

W−

Vμi

1
L

e−iEit+ipiL ≈
1
L

e−i m2
i L

2E

t = L

Neutrino oscillations for 
Quantum Field Theorists

𝒜 ∝∑
i

V*ei Vμi
1
L

e−i m2
i L

2E 𝒜
2

∝
1
L2 ∑

i

V*eiVμie−i Lm2
i

2E

2



29

Peμ(L/E) = ∑
i,j

V*eiV*μjVμiVej e−iL
Δm2

ij
2E

(Quasi)periodic dependence («oscillations») of the probability

Non-zero non-diagonal  required and Vαi Δm2
ij ≡ m2

i − m2
j ≠ 0

What is oscillating? The lepton flavor Le ↔ Lμ

Neutrino oscillations for 
Quantum Field Theorists

𝒜
2

∝
1
L2 ∑

i

V*eiVμie−i Lm2
i

2E

2
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Three neutrino oscillations in 
vacuum

V*e1 V*e2 V*e3

V*μ1 V*μ2 V*μ3

V*τ1 V*τ2 V*τ3

=
1 0 0
0 cos θ23 sin θ23

0 −sin θ23 cos θ23

cos θ13 0 sin θ13e−iδ

0 1
−sin θ13eiδ 0 cos θ13

cos θ12 sin θ12 0
−sin θ12 cos θ12 0

0 0 1

 Three mixing angles θ12, θ13, θ23

 One phase: .  
— If : CP violation, which can be observed as:

δ
δ ≠ 0, π

P(να → νβ) ≠ P(να → νβ),  for α ≠ β
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V*e1 V*e2 V*e3

V*μ1 V*μ2 V*μ3

V*τ1 V*τ2 V*τ3

=
1 0 0
0 cos θ23 sin θ23

0 −sin θ23 cos θ23

cos θ13 0 sin θ13e−iδ

0 1
−sin θ13eiδ 0 cos θ13

cos θ12 sin θ12 0
−sin θ12 cos θ12 0

0 0 1

 Solar and reactor neutrino: θ12, Δm2
21

 Atmospheric and accelerator neutrino: θ23, Δm2
32

 Reactor neutrino at 2 km (Daya Bay, RENO, DC): θ13, Δm2
32

Δm2
21 ≈ 7.5 ⋅ 10−5eV2} |Δm2
32 | ≈ 2.4 ⋅ 10−3eV2

eV

0.01

0.05

0.15

 Neutrino mass measurements: 
Δm2

21 = m2
2 − m2

1 , m2
2 = m2

1 + Δm2
21

m2 = m2
1 + Δm2

21 ≥ Δm2
21 ≈ 0.01 eV

Normal ordering m3 = m2
2 + |Δm2

32 | ≥ 0.05 eV, m3 > m2

Inverse ordering m2 = m2
3 + |Δm2

32 | ≥ 0.05 eV, m2 > m3

Three neutrino oscillations in 
vacuum. Experimental summary
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Neutrino oscillations in matter



If matter matters?
Weak interactions are very weak

100%50%

SunAlpha Centauris

 km4 ⋅ 1013

33

Lead:
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If matter matters?
Weak interactions are very weak

 If neutrino interacts so weakly, then Sun is just a transparent medium.

— Why it can matter?

 Glass or drop of water are also transparent media … but they do matter on light 
propagation because of refraction
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Do you understand light 
refraction?
Check yourself

 Light slows down in matter because:

— It is absorbed by atoms and re-emitted with some delay

Find the right answer

— It is scattered by atoms and takes a longer path
— It experiences a friction
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Do you understand light 
refraction?
Check yourself

 Light slows down in matter because:

— It is absorbed by atoms and re-emitted with some delay

Find the right answer

— It is scattered by atoms and takes a longer path
— It experiences a friction

Re-emission does not keep 
the original direction
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Do you understand light 
refraction?
Check yourself

 Light slows down in matter because:

— It is absorbed by atoms and re-emitted with some delay

Find the right answer

— It is scattered by atoms and takes a longer path
— It experiences a friction

More material —> wider 
the beam
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Do you understand light 
refraction?
Check yourself

 Light slows down in matter because:

— It is absorbed by atoms and re-emitted with some delay

Find the right answer

— It is scattered by atoms and takes a longer path
— It experiences a friction

Just NO!
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Do you understand light 
refraction?
Check yourself

 Light slows down in matter because:

Find the right answer

— Incident electromagnetic wave forces electrons to 
vibrate and emit the secondary wave

Image source: Wikipedia

— Both the incident and the secondary waves move at 
the speed of light.

— The secondary wave is delayed in phase by about 
 and the front of resulting wave moves slowerπ/2



40

Refraction index

These complex phenomena can be conveniently  described by a refraction index n

Consider a wave  in vacuum.cos(ω ⋅ t − k ⋅ x)

— The phase velocity can be found from   as ω ⋅ t − k ⋅ x = 0
c =

x
t

=
ω
k

Consider a wave  in matter.cos(ω ⋅ t − n ⋅ k ⋅ x)

— The phase velocity can be found from   as ω ⋅ t − n ⋅ k ⋅ x = 0
v =

x
t

=
ω

n ⋅ k
=

c
n
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Refraction index

Microscopic consideration yields  

, 

Where  is a photon-matter potential due to 

n = 1 +
V
k

V γ + e → γ + e

Neutrino also experiences the refraction in matter due to νe,μ + e → νe,μ + e
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 Due to  reaction  experience the potential (calculated in the SM)νe + e → νe + e νe

 The potential is negligibly small compared to the neutrino energy

V ≪ Eν ≃ (0.1 − 10) ⋅ 106 eV

V = 2GFne ≈ 10−10 − 10−11 эВ

 However it is comparable with  

ΔE =
Δm2

2E
≃

10−5 eV2

106 eV
= 10−11 eV

 Sun refracts neutrino like a glass ball refracts the light

If matter matters?
YES!



Neutrino oscillations 
in matter

43

e−νe

e−νμ

W−

 do not feel the electrons (via  exchange)νμ W

 can pass without interactions with electronsνe

νe e−

  can interact with electrons in νe νe + e → νe + e

}
Refraction
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Neutrino oscillations 
in matter
 Sun refracts neutrino like a glass ball refracts the light



45

nνe
= 1 − 2GFne/E

 Refraction index for  νe

 Refraction index for νμ
nνμ

= 1

 The difference in refraction indices for  and  drastically 
changes the oscillation pattern

νe νμ

nνe
− nνμ

= − 2GFne/Eν

Neutrino oscillations 
in matter
 Sun refracts neutrino like a glass ball refracts the light
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Vacuum MSW resonance Adiabatic transition

Follow lecture 
by O. Smirnov

Neutrino oscillations 
in matter

Image courtesy: BOREXINO Coll.
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Critical 
Review



(Implicit) hypotheses 
Of neutrino oscillation within plane wave model
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A coherent superposition  is produced and interacted 

Quantum states  have definite momenta with  

Momenta of all  are the same  

Neutrino are ultra-relativistic particles  

Time  equals to the distance :  

να = ∑
i

V*αiνi

|νi⟩ δpi = 0

|νi⟩ p1 = p2 = p3 = p

|pi | ≫ mi

t L

t = L
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A coherent superposition  is produced and interactedνα = ∑
i

V*αiνi

Then, why massive neutrino  are produced coherently, while 
charged leptons seem not? If charged leptons oscillate?

νi

In the SM charged leptons and neutrino fields are symmetric

ℒ = −
g

2 2 ∑
α=e,μ,τ

3

∑
i=1

Vαi ℓαOμνiWμ + эс

Lepton mixing matrix (not 
neutrino mixing matrix!)

(Implicit) hypotheses 
Of neutrino oscillation within plane wave model
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Quantum states  have definite momenta with |νi⟩ δpi = 0

Then, position uncertainty reads: δxν =
1

δpν
= ∞

What is the distance  in the oscillation formula then?L

(Implicit) hypotheses 
Of neutrino oscillation within plane wave model
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Momenta of all  are the same |νi⟩ p1 = p2 = p3 = p

Breaks Lorentz invariance 

Contradicts to kinematics  of decays

Try to prove these 
statements yourself

(Implicit) hypotheses 
Of neutrino oscillation within plane wave model
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Neutrino are ultra-relativistic particles |pi | ≫ mi

True for all experiments so far

Not true for relic neutrinos

(Implicit) hypotheses 
Of neutrino oscillation within plane wave model
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Time  equals to the distance :  t L
t = L

Let us make it better L = vt =
pi

Eν
t

φ = Eit − piL = Eit −
p2

i

Ei
t =

E2
i − p2

i

Ei
t =

m2
i

Ei
t

The phase difference then:

φij = φi − φj =
m2

i − m2
j

Ei
t = 2

m2
i − m2

j

2Ei
t

The phase difference is TWO times larger than the standard!

(Implicit) hypotheses 
Of neutrino oscillation within plane wave model



Resume
Plane wave model
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A coherent superposition  is produced and interacted 

Quantum states  have definite momenta with  

Momenta of all  are the same  

Neutrino are ultra-relativistic particles  

Time  equals to the distance :  

να = ∑
i

V*αiνi

|νi⟩ δpi = 0

|νi⟩ p1 = p2 = p3 = p

|pi | ≫ mi

t L

t = L



Wave packet model
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Wave packet model
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|p⟩ → ∫
dp
2π

g(p, P; σp) |p⟩

g(p, P; σp)

σp

p
Momentum space



57

|p⟩ → ∫
dp
2π

g(p, P; σp) |p⟩

g(x, X; σx)

σx

x
Coordinate space

Wave packet model
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|p⟩ → ∫
dp
2π

g(p, P; σp) |p⟩

σx

x

g(x, X; σx)

Coordinate space

Wave packet model



59

|p⟩ → ∫
dp
2π

g(p, P; σp) |p⟩

x

g(x, X; σx)

Wave packet disperses (ignore it here)

Wave packet model

Coordinate space



Vacuum neutrino oscillations
In wave packet model

60



Oscillation probability
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Peμ(L/E) = 1 − sin2 2θ sin2 Δm2L
4E

Plane wave model

Wave packet model

Peμ(L/E) = 1 −
1
2

sin2 2θ (1−exp [−(L/Lcoh)2 − 1/4(Δm2/σm2)] cos
Δm2L

2E )



Resume
Plane wave model
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A coherent superposition  is produced and interacted 

only if  

Quantum states  do not have definite momenta  

Momenta of all  are not the same  

Neutrino can be ultra-relativistic or non-relativistic particles 

Time  is not equal to the distance :  

να = ∑
i

V*αiνi

Δm2 ≪ σm2

|νi⟩

|νi⟩

t L

t =
2L

1
v1

+ 1
v2



In wave packet model
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Peμ(L/E) = 1 −
1
2

sin2 2θ (1−exp [−(L/Lcoh)2 − 1/4(Δm2/σm2)] cos
Δm2L

2E )
Lcoh = Losc

p

2πσp

ν1 ν2 ν1 ν2

Lcoh
σm2 = 2 2pσp

Oscillation probability

D.N. & V.Naumov, J.Phys.G 37 (2010) 105014 
D.N. & V.Naumov, JPhys.Part.Nucl. 51 (2020) 1, 1-106

Coherent Loss of coherency

Coherence length 

Uncertainty in mass2
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Do charged leptons oscillate?
See also:  
E. Akhmedov JHEP09(2007)116

W−

ν1 V*α1 ℓα𝒜 ∝ ∑
α=e,μ,τ

ν2

W−

Vα2

Pν1ν2
(L/E) = 1 −

1
2

sin2 2θ (1−e−(L/Lcoh)2e−1/4(Δm2
eμ/σm2) cos

Δm2L
2E )

≪ 1

}

YES, in principle. 
NO practically



Summary
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Summary

66

W−

e− V*ei νi𝒜 ∝ ∑
i

μ−

W−

Vμi

ν1 ν2 ν1 ν2

Lcoh


