

Joint Institute for **Nuclear Research**

JINR Association of Young **Scientists and Specialists**

The XXVII International Scientific Conference of Young Scientists and Specialists

heory of neutrino oscillations

Devoted to the 110th anniversary of Bruno Pontecorvo

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

Dmitry V.Naumov

Natural units

Quantum mechanics Special Relativity

[energy] = [momentum] = [mass] $[time] = [coordinate] = [mass]^{-1}$ [orbital moment] = $[spin] = [mass]^0 = 1$

Лаборатория ядерных проблем им. В. П. Джелепова

 $E = \hbar \omega$ $E^2 = \mathbf{p}^2 \mathbf{c}^2 + \mathbf{m}^2 \mathbf{c}^4$

- $\hbar = c = 1$

Natural units

h = c = 1

[energy] = [momentum] = [mass]

$[time] = [coordinate] = [mass]^{-1}$ [orbital moment] = $[spin] = [mass]^0 = 1$

Energy measured in electron-volt (eV).

cm ⁻¹ eV to

eV to s^{-1}

 $\hbar = 1 = \frac{2}{2} \cdot 10^{-15} \cdot \text{eV} \cdot \text{s}$

Question: dimension of **E**, **B**?

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

 $\hbar c = 1 = 2 \cdot 10^{-5} \cdot \text{eV} \cdot \text{cm}$

 $keV = 10^{3} eV$ $MeV = 10^{6} eV$ $GeV = 10^9 eV$

Three lepton numbers

Лаборатория ядерных проблем им. В. П. Джелепова

Iron	

Neutrino properties

- O Zero electric charge
- Fermion. Spin = 1/2 ($\cdot\hbar = 1$)
- ^O Known three types ν_1, ν_2, ν_3 and their anti-particles $\overline{\nu}_1, \overline{\nu}_2, \overline{\nu}_3$ with definite masses. Also, their flavor mixtures ν_e (1956), ν_μ (1962), ν_τ (2000)
- O Neutrino participates in weak and gravitational interactions
- ^O Weak interactions break parity transformation ($\mathbf{r} \rightarrow -\mathbf{r}$)

Лаборатория ядерных проблем им. В. П. Джелепова

Standard Model (SM)

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

Follow for a dedicated lecture by A. Bednyakov

H

Interaction carriers

Sheldon Glashow

Steven Weinberg

Abdus Salam

Lepton numbers in the SM

OLepton numbers are conserved for massless neutrino

$$\begin{pmatrix} \nu_e \\ e \end{pmatrix}$$

 $L_e = 1 \qquad L_\mu = 1$

OPossible:

ONot possible:

$$\nu_{\mu} + n$$

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

 $L_{\tau} = 1$

 $\nu_e + n \rightarrow p + e^-$

Massive Neutrino in the SM

OThree lepton doublets interact with W-field

• The interaction amplitude $\mathscr{A} \propto \frac{g}{2\sqrt{2}} V_{\alpha i}^*$ for ν_i and ℓ_{α} , $\alpha = (e, \mu, \tau)$

OPossible processes:

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

- $\begin{pmatrix} \nu_1 \\ e \end{pmatrix}_{\mathcal{I}} \qquad \begin{pmatrix} \nu_2 \\ \mu \end{pmatrix}_{\mathcal{I}} \qquad \begin{pmatrix} \nu_3 \\ \tau \end{pmatrix}_{\mathcal{I}}$

 $\begin{array}{l} e+W^{-}\rightarrow\nu_{i}\propto V_{ei}^{*}\\ \mu+W^{-}\rightarrow\nu_{i}\propto V_{\mu i}^{*} \end{array}$ $\tau + W^- \to \nu_i \propto V^*_{\tau i}$

Neutrino in the Standard Model

o The interaction amplitude
$$\mathscr{A} \propto \frac{g}{2\sqrt{2}} V_{\alpha i}^*$$

ONine numbers V^{*}, make unitary lepton mixing matrix Pontecorvo-Maki-Nakagawa-Sakata

ONON-DIAGONAL V and Differing masses m_i lead to *Neutrino OSCILATION* – macroscopic display of quantum world

Лаборатория ядерных проблем им. В. П. Джелепова

for ν_i and ℓ_{α}

Neutrino oscillations violate lepton numbers

ONot possible:

Production

OPeriodically possible:

Production

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

Large distance

Detection

A bit of history of neutrino oscillations

- OFirst idea proposed by Bruno Pontecorvo in 1957:
 - Suggested $\nu \leftrightarrow \overline{\nu}$ oscillations based on analogy with $K^0 \leftrightarrow K^0$
- OFlavor transitions first considered by Maki-Nakagawa-Sakata in 1962 - Suggested idea of mixing and $\nu_e \leftrightarrow \nu_\mu$ oscillations

Z. Maki (1929-2005)

M. Nakagawa (1932-2001)

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

S. Sakata (1911-1970)

11

A bit of history of neutrino oscillations

- $O_{\nu_e} \leftrightarrow \nu_{\mu}$ oscillations considered by Pontecorvo in 1967: - Hypotheses about possible mechanisms – Hypothesis about solar neutrino deficit (before the experiment!)
- First theory for $\nu_e \leftrightarrow \nu_\mu$ oscillations developed by Gribov and Pontecorvo in 1969.
- O Neutrino oscillations firmly discovered experimentally with: solar, reactor, accelerator and atmospheric neutrino. NP in 2015

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

В формулах, приведенных на рис.3, т — масса электрона, появление которой во вкладах диаграмм более или менее произвольно, и Л - параметр обре-

 $\nu m \sim F \Lambda^2 m_e / (2\pi)^2$ $\sim GF \Lambda^4 m_e / (2\pi)^4$ $m \sim F^2 \Lambda^4 m_e / (2\pi)^4$

зания [20], который предположительно будет взят равным 100 ГэВ во всех случаях, когда взаимодействие имеет место только между лептонами, и равным массе нуклона, когда во взаимодействии участвуют адроны (например, диаграмма е рис.3). Несмотря на то, что только что сказанное в самом лучшем случае крайне грубо, а в самом худшем - совсем неправильно, я буду продолжать спекулировать на нейтринных осцилляциях. Здесь можно дополнить, что способ нахождения нарушения лептонного заряда, основанный на осцилляции $\overline{\nu} \rightleftharpoons \nu$, является, в принципе, более чувствительным, чем другие методы. При-

Рис.3. Некоторые возможные диаграммы и их вклады. $G = 10^{-5} / M_p^2$ — константа слабого взаимодействия, М_р — масса протона, F — константа нового взаимодействия, т вклад данной диаграммы в массу нейтрино, $\mu = |m_v - m_v|$ — масса перехода $v \rightleftharpoons \overline{v}$, *m_e* — масса электрона, Л — параметр обрезания

чина этого в том, что период осцилляций обратно пропорционален первой степени матричного элемента перехода, в то время как скорости распадов и реакций пропорциональны его квадрату.

From B. Pontecorvo paper (1957)

What is neutrino oscilation?

Лаборатория ядерных проблем им. В. П. Джелепова

What is neutrino oscillation?

- OPhenomenon of lepton number transformation: — Periodic (oscillation!), quasi-periodic (in vacuum)
 - Complicated function (in matter)
- OWe explore neutrino oscillations tailored to different expertise levels:
 - Drivers and Pedestrians
 - Life Scientists
 - Experimental Physicists
 - Mechanical Engineers
 - Quantum Mechanics Interested Learners
 - Quantum Field Theorists

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

Neutrino oscillation: Not very good terminology. – Lepton number oscillation (or transformation) better

Apologies if you do not find yourself in the list!

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

Normal particle

Probability to meet passenger car

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

Probability to meet passenger car

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

Probability to meet passenger car

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

Neutrino oscillations for Life Scientists

Animation by Marina Mishchenko

Лаборатория ядерных проблем им. В. П. Джелепова

Neutrino oscillations for experimental physicists

- O Prepare ν_{ρ} beam (as an example)
- Place your detector at an appropriate distance to measure ν_e deficit and/or ν_{μ} appearance
- Use formula $P(L/E) = 1 \sin^2 2\theta \cdot \sin^2 \frac{\Delta m^2}{4} \frac{L}{E}$ for oscillation **survival** probability to measure θ and Δm^2

Лаборатория ядерных проблем им. В. П. Джелепова

Neutrino oscillations for experimental physicists

Лаборатория ядерных проблем им. В. П. Джелепова

Neutrino oscillations for mechanical engineers

^O Change variables to diagonalize V

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{pmatrix} \begin{pmatrix} x'_1 \\ x'_2 \end{pmatrix}$$

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

O Consider two coupled pendulums

O Potential energy V =

$$= \frac{m}{2} \left(\frac{g}{l_1} x_1^2 + \frac{g}{l_2} x_2^2 + \frac{k}{m} (x_1 - x_2)^2 \right)$$

$$= \frac{m}{2}(x_1, x_2) \begin{pmatrix} \frac{g}{l_1} + \frac{k}{m} & -\frac{k}{m} \\ -\frac{k}{m} & \frac{g}{l_2} + \frac{k}{m} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$V = \frac{m}{2} (x'_1, x'_2) \begin{pmatrix} \omega_1^2 & 0 \\ 0 & \omega_2^2 \end{pmatrix} \begin{pmatrix} x'_1 \\ x'_2 \end{pmatrix}$$

Neutrino oscillations for mechanical engineers

Лаборатория ядерных проблем им. В. П. Джелепова

Neutrino oscillations for mechanical engineers

^O Begin with blue pendulum given total energy E_0

Лаборатория ядерных проблем им. В. П. Джелепова

$$P(L/E) = 1 - \sin^2 2\theta \cdot \sin^2 \frac{\Delta E \cdot L}{2}$$
$$\sin^2 2\theta = \frac{4r}{(1+r)^2} \qquad \Delta \omega = \Delta E$$

Neutrino oscillations for Quantum Mechanics Learners

evolution:

 $|\Psi_i(t)\rangle =$

- O The wave function oscillates but the system remains in the same state: survival probability=1
- Consider a superposition $|\Psi\rangle = a \cdot |\Psi_1\rangle$ Its time evolution:

$$|\Psi(t)\rangle = a \cdot e^{-iE_1t} |\Psi_1(0)\rangle + be^{-iE_2t} \cdot |\Psi_2(0)\rangle$$

$$(|a|^2 + |b|^2 = 1)$$

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

^O Consider quantum system to be in a **pure** state $|\Psi_i\rangle$ with definite energy E_i . Its time

$$= e^{-iE_it} |\Psi_i(0)\rangle$$

$$\rangle + b \cdot |\Psi_2\rangle.$$

Hydrogen ψ_{410} . Source: wikipedia

Neutrino oscillations for Quantum Mechanics Learners

• Consider a superposition $|\Psi\rangle = a \cdot |\Psi_1\rangle + b \cdot |\Psi_2\rangle$. Its time evolution:

• Survival probability after time *t* reads:

 $P = |\langle \Psi(0) | \Psi(t) \rangle|^2 =$

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

$|\Psi(t)\rangle = a \cdot e^{-iE_1t} |\Psi_1(0)\rangle + be^{-iE_2t} \cdot |\Psi_2(0)\rangle$

$$\left| |a|^2 \cdot e^{-iE_1t} + |b|^2 e^{-iE_2t} \right|^2$$

$$1 - 4|a|^2|b|^2\sin^2\frac{(E_1 - E_2) \cdot t}{2}$$

Neutrino oscillations for Quantum Field Theorists

O Let us draft a Feynman diagram for lepton number violating process

Лаборатория ядерных проблем им. В. П. Джелепова

Neutrino oscillations for Quantum Field Theorists

 $\mathscr{A} \propto \sum_{e_i} V^*_{\mu i} V_{\mu i} \frac{1}{r} e^{-i \frac{m_i^2 L}{2E}}$

Лаборатория ядерных проблем им. В. П. Джелепова

$$t = L$$

$$V_{\mu i}$$

$$V_{\mu i}$$

$$\mu^{-}$$

$$V_{\mu i}$$

Neutrino oscillations for Quantum Field Theorists

$$\left|\mathscr{A}\right|^2 \propto \frac{1}{L^2}$$

$$P_{e\mu}(L/E) = \sum_{i,j} V_{ei}^* V_{\mu j}^* V_{\mu i} V_{ej} e^{-iL \frac{\Delta m_{ij}^2}{2E}}$$

O(Quasi)periodic dependence («oscillations») of the probability

ONon-zero non-diagonal $V_{\alpha i}$ required and

OWhat is oscillating? The lepton flavor $L_e \leftrightarrow L_\mu$

Лаборатория ядерных проблем им. В. П. Джелепова

$$\sum_{i} V_{ei}^* V_{\mu i} e^{-i\frac{Lm_i^2}{2E}}$$

$$\Delta m_{ij}^2 \equiv m_i^2 - m_j^2 \neq 0$$

Three neutrino oscillations in vacuum

$$\begin{pmatrix} V_{e1}^* & V_{e2}^* & V_{e3}^* \\ V_{\mu1}^* & V_{\mu2}^* & V_{\mu3}^* \\ V_{\tau1}^* & V_{\tau2}^* & V_{\tau3}^* \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & \\ -\sin\theta_{13}e^{i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} \\ -\sin\theta_{12} & \cos\theta_{12} \\ 0 & 0 \end{pmatrix}$$

O Three mixing angles $\theta_{12}, \theta_{13}, \theta_{23}$

One phase: δ .

- If $\delta \neq 0$, π : **CP violation**, which can be observed as:

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) \neq P(\overline{\nu}_{\alpha} \rightarrow \overline{\nu}_{\beta}), \text{ for } \alpha \neq \beta$$

Лаборатория ядерных проблем им. В. П. Джелепова

Three neutrino oscillations in vacuum. Experimental summary

$$\begin{pmatrix} V_{e1}^* & V_{e2}^* & V_{e3}^* \\ V_{\mu 1}^* & V_{\mu 2}^* & V_{\mu 3}^* \\ V_{\tau 1}^* & V_{\tau 2}^* & V_{\tau 3}^* \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix}$$

• Solar and reactor neutrino: θ_{12} , Δm_{21}^2

^O Atmospheric and accelerator neutrino: θ_{23} , Δm_{32}^2

• Reactor neutrino at 2 km (Daya Bay, RENO, DC): θ_{13} , Δm_{32}^2

ev 0.15 **+** ▲ 0.05 -0.01

O Neutrino mass measurements:

$$\Delta m_{21}^2 = m_2^2 - m_1^2, m_2^2 = m_1^2 + \Delta m_{21}^2$$

$$m_2 = \sqrt{m_1^2 + \Delta m_{21}^2} \ge \sqrt{\Delta m_{21}^2} \approx 0.01 \text{ eV}$$
nal ordering
$$m_3 = \sqrt{m_2^2 + |\Delta m_{32}^2|} \ge 0.05 \text{ eV}, m_3 > m_2$$
se ordering
$$m_2 = \sqrt{m_3^2 + |\Delta m_{32}^2|} \ge 0.05 \text{ eV}, m_2 > m_3$$

Norm

Invers

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

Neutrino oscillations in matter

If matter matters?

Weak interactions are very weak

50%

Alpha Centauris

Лаборатория ядерных проблем им. В. П. Джелепова

If matter matters?

Weak interactions are very weak

- O If neutrino interacts so weakly, then Sun is just a transparent medium.
 - Why it can matter?
- O Glass or drop of water are also transparent media ... but they do matter on light propagation because of refraction

Лаборатория ядерных проблем им. В. П. Джелепова

Check yourself

Find the right answer

- O Light slows down in matter because:
 - It is absorbed by atoms and re-emitted with some delay
 - It is scattered by atoms and takes a longer path
 - It experiences a friction

Лаборатория ядерных проблем им. В. П. Джелепова

Check yourself

Find the right answer

- O Light slows down in matter because:
 - It is absorbed by atoms and re-emitted with some delay
 - It is scattered by atoms and takes a longer path
 - It experiences a friction

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

Re-emission does not keep the original direction

Check yourself

Find the right answer

O Light slows down in matter because:

It is absorbed by atoms and re-emitted with some delay

It is scattered by atoms and takes a longer path

— It experiences a friction

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

More material —> wider the beam

Check yourself

Find the right answer

O Light slows down in matter because:

It is absorbed by atoms and re-emitted with some delay

It is scattered by atoms and takes a longer path

It experiences a friction

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

Just NO!

Check yourself

Find the right answer

O Light slows down in matter because:

– Incident electromagnetic wave forces electrons to vibrate and emit the secondary wave

- Both the incident and the secondary waves move at the speed of light.

- The secondary wave is delayed in phase by about $\pi/2$ and the front of resulting wave moves slower

Лаборатория ядерных проблем им. В. П. Джелепова

Refraction index

- ^O These complex phenomena can be conveniently described by a refraction index *n*
- Consider a wave $\cos(\omega \cdot t k \cdot x)$ in vacuum.
 - The phase velocity can be found from

• Consider a wave $\cos(\omega \cdot t - n \cdot k \cdot x)$ in matter. - The phase velocity can be found from α

 $\nu =$

Лаборатория ядерных проблем им. В. П. Джелепова

$$\omega \cdot t - k \cdot x = 0 \text{ as}$$
$$c = \frac{x}{t} = \frac{\omega}{k}$$

$$\omega \cdot t - n \cdot k \cdot x = 0 \text{ as}$$

$$= \frac{x}{t} = \frac{\omega}{n \cdot k} = \frac{c}{n}$$

Refraction index

O Microscopic consideration yields

Where V is a photon-matter potential due to $\gamma + e \rightarrow \gamma + e$

• Neutrino also experiences the refraction in matter due to $\nu_{e,\mu} + e \rightarrow \nu_{e,\mu} + e$

Лаборатория ядерных проблем им. В. П. Джелепова

 $n = 1 + \frac{V}{k},$

If matter matters?

- Objust to $\nu_e + e \rightarrow \nu_e + e$ reaction ν_e experience the potential (calculated in the SM) $V = \sqrt{2}G_F n_o \approx 10^{-10} - 10^{-11} \text{ }3B$
- O The potential is negligibly small compared to the neutrino energy $V \ll E_{\nu} \simeq (0.1 - 10) \cdot 10^6 \, \text{eV}$
- O However it is comparable with $\Delta E = \frac{\Delta m^2}{2E} \simeq \frac{10^{-5} \,\text{eV}^2}{10^6 \,\text{eV}} = 10^{-11} \,\text{eV}$

O Sun refracts neutrino like a glass ball refracts the light

Лаборатория ядерных проблем им. В. П. Джелепова

- $\circ \nu_{\mu}$ do not feel the electrons (via W exchange)
- $O_{\nu_{\rho}}$ can pass without interactions with electrons
- O_{ν_e} can interact with electrons in $\nu_e + e \rightarrow \nu_e + e$

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

Refraction

O Sun refracts neutrino like a glass ball refracts the light

Лаборатория ядерных проблем им. В. П. Джелепова

O Sun refracts neutrino like a glass ball refracts the light

^O Refraction index for ν_{ρ}

O Refraction index for ν_{μ}

O The difference in refraction indices for ν_e and ν_μ drastically changes the oscillation pattern

$$n_{\nu_e} - n_{\nu_\mu} = -\sqrt{20}$$

 $n_{\nu_{\mu}} = 1$

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

 $n_{\nu_e} = 1 - \sqrt{2}G_F n_e/E$

 $G_F n_e / E_{\nu}$

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

Follow lecture by O. Smirnov

Image courtesy: BOREXINO Coll.

Critical Review

Of neutrino oscillation within plane wave model

o A coherent superposition $\nu_{\alpha} = \sum V_{\alpha i}^* \nu_i$ is produced and interacted

- ^O Quantum states $|\nu_i\rangle$ have definite momenta with $\delta p_i = 0$
- Momenta of all $|\nu_i\rangle$ are the same $p_1 = p_2 = p_3 = p_3$
- Neutrino are ultra-relativistic particles $|p_i| \gg m_i$
- Time *t* equals to the distance *L*:

Лаборатория ядерных проблем им. В. П. Джелепова

Of neutrino oscillation within plane wave model

- A coherent superposition $\nu_{\alpha} = \sum V^*_{\alpha i} \nu_i$ is produced and interacted
- ^O Then, why massive neutrino ν_i are produced coherently, while charged leptons seem not? If charged leptons oscillate?
- O In the SM charged leptons and neutrino fields are symmetric

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

 $\mathscr{L} = -\frac{g}{2\sqrt{2}} \sum_{\alpha=e,\mu,\tau} \sum_{i=1}^{3} V_{\alpha i} \overline{\ell}_{\alpha} O^{\mu} \nu_{i} W_{\mu} + \Im C$ Lepton mixing matrix (not neutrino mixing matrix!)

Of neutrino oscillation within plane wave model

- Quantum states $|\nu_i\rangle$ have definite momenta with $\delta p_i = 0$
- O Then, position uncertainty reads: $\delta x_{\nu} = \frac{1}{\delta p_{\nu}} = \infty$
- What is the distance *L* in the oscillation formula then? O

Лаборатория ядерных проблем им. В. П. Джелепова

Of neutrino oscillation within plane wave model

Momenta of all $|\nu_i\rangle$ are the same $p_1 = p_2 = p_3 = p_3$

O Breaks Lorentz invariance

O Contradicts to kinematics of decays

Try to prove these statements yourself

Лаборатория ядерных проблем им. В. П. Джелепова

Of neutrino oscillation within plane wave model

Neutrino are ultra-relativistic particles $|p_i| \gg m_i$

O True for all experiments so far

O Not true for relic neutrinos

Лаборатория ядерных проблем им. В. П. Джелепова

Of neutrino oscillation within plane wave model

Time *t* equals to the distance *L*:

t = Lo Let us make it better $L = vt = \frac{p_i}{E_v}t$ $\varphi = E_i t - p_i L = E_i t - \frac{p_i^2}{E_i}t$

O The phase difference then:

$$\varphi_{ij} = \varphi_i - \varphi_j = \frac{m_i^2 - m_j^2}{E_i}t = 2\frac{m_i^2 - m_j^2}{2E_i}t$$

O The phase difference is TWO times larger than the standard!

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

$$t = \frac{E_i^2 - p_i^2}{E_i} t = \frac{m_i^2}{E_i} t$$

53

Plane wave model

- o A coherent superposition $\nu_{\alpha} = \sum V^*_{\alpha i} \nu_i$ is produced and interacted
- ^O Quantum states $|\nu_i\rangle$ have definite momenta with $\delta p_i = 0$
- Momenta of all $|\nu_i\rangle$ are the same $p_1 = p_1$
- ^ONeutrino are ultra-relativistic particles $|p_i| \gg m_i$
- Time *t* equals to the distance *L*:

t = L

Лаборатория ядерных проблем им. В. П. Джелепова

$$p_2 = p_3 = p$$

Лаборатория ядерных проблем им. В. П. Джелепова

Momentum space

Лаборатория ядерных проблем им. В. П. Джелепова

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

 $|p\rangle \rightarrow \int \frac{dp}{2\pi} g(p, P; \sigma_p) |p\rangle$

Coordinate space

 \mathcal{X}

Coordinate space

Лаборатория ядерных проблем им. В. П. Джелепова

 $|p\rangle \rightarrow \int \frac{dp}{2\pi} g(p, P; \sigma_p) |p\rangle$

Wave packet disperses (ignore it here)

Лаборатория ядерных проблем им. В. П. Джелепова

Объединенный институт ядерных исследований

 $|p\rangle \rightarrow \int \frac{dp}{2\pi} g(p, P; \sigma_p) |p\rangle$

Coordinate space

Vacuum neutrino oscillations In wave packet model

Лаборатория ядерных проблем им. В. П. Джелепова

Oscillation probability

Plane wave model $P_{e\mu}(L/E) = 1 - \sin^2 2\theta \sin^2 \frac{\Delta m^2 L}{4E}$

Wave packet model

$$P_{e\mu}(L/E) = 1 - \frac{1}{2}\sin^2 2\theta \left(1 - \exp\left[-(L/L_{coh})^2 - 1/4(\Delta m^2/\sigma_{m^2})\right]\cos\frac{\Delta m^2 L}{2E}\right)$$

Лаборатория ядерных проблем им. В. П. Джелепова

Plane wave model

O A coherent superposition $\nu_{\alpha} = \sum V_{\alpha i}^* \nu_i$ is produced and interacted

only if
$$\Delta m^2 \ll \sigma_{m^2}$$

- ^O Quantum states $|\nu_i\rangle$ do not have definite momenta
- Momenta of all $|\nu_i\rangle$ are not the same
- O Neutrino can be ultra-relativistic or non-relativistic particles
- Time *t* is not equal to the distance *L*:

Лаборатория ядерных проблем им. В. П. Джелепова

Oscillation probability

In wave packet model

$$P_{e\mu}(L/E) = 1 - \frac{1}{2}\sin^2 2\theta \left(1 - \exp\left[-(L/L)\right]\right)$$

/

 $L_{coh} = L_{osc} \frac{P}{\sqrt{2\pi\sigma_p}}$

Coherence length

$$\sigma_{m^2} = 2\sqrt{2}p\sigma_p$$

Uncertainty in mass²

Лаборатория ядерных проблем им. В. П. Джелепова

Do charged leptons oscillate? YES, in principle. NO practically See also:

Лаборатория ядерных проблем им. В. П. Джелепова

Summary

Лаборатория ядерных проблем им. В. П. Джелепова

Summary

Лаборатория ядерных проблем им. В. П. Джелепова

