### Cosmology

**Dmitry Gorbunov** 

Institute for Nuclear Research of RAS, Moscow

The XXVII International Scientific Conference of Young Scientists and Specialists (AYSS-2023) Devoted to the 110th Anniversary of Bruno Pontecorvo

#### JINR, Dubna, Russia

Dmitry Gorbunov (INR)

Cosmology, 3 November 2023

JINR, AYSS-2023 1/105



### Standard Model: Major Problems

Gauge fields (interactions):  $\gamma$ ,  $W^{\pm}$ , Z, gThree generations of matter:  $L = \begin{pmatrix} v_L \\ e_L \end{pmatrix}$ ,  $e_R$ ;  $Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$ ,  $d_R$ ,  $u_R$ 

- Describes
  - all experiments dealing with electroweak and strong interactions
- Does not describe (PHENO)
  - Neutrino oscillations
  - Dark matter (Ω<sub>DM</sub>)
  - Baryon asymmetry (Ω<sub>B</sub>)
  - Inflationary stage
  - Reheating

(THEORY)

- Dark energy (Ω<sub>Λ</sub>)
- Strong CP-problem
- Gauge hierarchy
- Quantum gravity

#### Must explain all above

???



### Problems in astrophysics...(?)

- Origin of extragalactic magnetic fields
- First stars and reionization of the Universe
- Mechanism of SuperNovae explosion
- Sources of Ultra-high energy cosmic rays (EeV-scale)
- Extremely low IR extragalactic background
- Too old White Dwarfs
- Origin of Fast Radio Bursts
- Origin of ICECUBE neutrinos (PeV-scale)
- Black hole physics
- . .
- Helioseismology vs helioemissivity
- Origin of the heat at the Earth

New Physics and New Cosmology may be

#### either responsible for

#### or testable there



## Experimental data in Cosmology and Astrophysics

- Each experiment may be unique (unrepeatable):
  - observe only one Universe
  - (so far) registered only one SN explosion
  - might observe only one magnetic monopole (?)
  - can study only one star
  - (so far) can study only one planet

• • •

• we register photons, neutrinos, gravitational waves, electrons, positrons, protons, nuclei,

but only photons(?), neutrinos and gravitational waves can point at the source

- Can not directly check the model of sources
- Can not directly check the media in between



- General facts and key observables
- 2 Mystery of Dark Energy
- 3 Evidences for Dark Matter in astrophysics and cosmology
  - Expanding Universe: mostly useful formulas
- 5 Neutrino
  - Dark Matter
    - WIMPs
    - Non-thermal mechanisms



### "Natural" units in particle physics

$$\hbar = c = k_{\rm B} = 1$$

measured in GeV: energy E, mass M, temperature T

 $m_p = 0.938 \text{ GeV}, 1 \text{ K} = 8.6 \times 10^{-14} \text{ GeV}$ 

measured in GeV<sup>-1</sup>: time *t*, length *L* 

1 s =  $1.5 \times 10^{24} \text{ GeV}^{-1}$ , 1 cm =  $5.1 \times 10^{13} \text{ GeV}^{-1}$ 

Gravity (General Relativity):  $V(r) = -G\frac{m_1m_2}{r}$  [G] =  $M^{-2}$ 

 $M_{\rm Pl} = 1.2 \times 10^{19} \, {\rm GeV} = 22 \, \mu {\rm g}$ 

 $G \equiv \frac{1}{M_{\rm Pl}^2}$ 



## "Natural" units in cosmology

$$1 \text{ Mpc} = 3.1 \times 10^{24} \text{ cm}$$

1 AU =  $1.5 \times 10^{13}$  cm 1 ly =  $0.95 \times 10^{18}$  cm

 $1 \text{ pc} = 3.3 \text{ ly} = 3.1 \times 10^{18} \text{ cm}$ 

mean Earth-to-Sun distance distance light travels in one year  $1 \text{ yr} = 3.16 \times 10^7 \text{ s}$ distance to object which has a parallax angle of one arcsec



100 AU — Solar system size 1.3 pc — nearest-to-Sun stars 1 kpc — size of dwarf galaxies 50 kpc — distance to dwarves 0.8 Mpc — distance to Andromeda 1-3 Mpc — size of clusters 15 Mpc — distance to Virgo

Earth's motion around Sun

Dmitry Gorbunov (INR)



Dmitry Gorbunov (INR)

Cosmology, 3 November 2023

JINR, AYSS-2023 8/105



#### Local Group and nearest galaxies



Dmitry Gorbunov (INR)

Cosmology, 3 November 2023

JINR, AYSS-2023 9/105





- 2 Mystery of Dark Energy
- 3 Evidences for Dark Matter in astrophysics and cosmology
- 4 Expanding Universe: mostly useful formulas
- 5 Neutrino
- 6 Dark Matter
  - WIMPs
  - Non-thermal mechanisms

General facts and key observables



### Universe is expanding





General facts and key observables







#### Expansion: redshift z









2105.05208







#### 2211.04492

Dmitry Gorbunov (INR)

#### Cosmology, 3 November 2023

JINR, AYSS-2023 15/105

#### General facts and key observables





Dmitry Gorbunov (INR)

Cosmology, 3 November 2023

JINR, AYSS-2023 16/105

1907.10625



General facts and key observables

NN NN



### Universe is homogeneous and isotropic



Dmitry Gorbunov (INR)

Cosmology, 3 November 2023

JINR, AYSS-2023 18/105





Dmitry Gorbunov (INR)

Cosmology, 3 November 2023

JINR, AYSS-2023 19/105





#### 2105.05208



1807.06209

ЯN

Dmitry Gorbunov (INR)

Cosmology, 3 November 2023

JINR. AYSS-2023 20/105



## The Universe: age & geometry & energy density

 $[H_0] = L^{-1} = t^{-1}$ 

| time scale: $t_{H_0} = H_0^{-1} \approx 14 \times 10^9 \text{ yr}$                                                                                       |                      |         | age of our Universe                 |                  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------|-------------------------------------|------------------|--|
| spatial scale: $I_{H_0} = H_0^{-1} \approx 4.3 \times 10^3 \text{ Mpc}$                                                                                  |                      |         | size of the visible Universe        |                  |  |
| $t_{H_0}$ is in agreement with various observations                                                                                                      |                      |         |                                     |                  |  |
| homogeneity and isotropy in 3d:                                                                                                                          |                      |         |                                     |                  |  |
| flat, spherical or hyperbolic                                                                                                                            |                      |         |                                     |                  |  |
| Observations:                                                                                                                                            | "very" flat          |         | R <sub>curv</sub> > 10              | $\times I_{H_0}$ |  |
| order-of-magnitude estimate                                                                                                                              | ):                   |         | $GM_U/I_U\sim G ho_0 I_{H_0}^3/I_H$ | $t_0 \sim 1$     |  |
| flat Universe                                                                                                                                            |                      |         |                                     |                  |  |
| $\rho_c = \frac{3}{8\pi} H_0^2 M_{\rm Pl}^2 \approx 0.53 \times 10^{-5} \frac{\text{GeV}}{\text{cm}^3} \longrightarrow 5 \text{ protons in each 1 } m^3$ |                      |         |                                     |                  |  |
| Dmitry Gorbunov (INR)                                                                                                                                    | Cosmology, 3 Novembe | er 2023 | JINR, AYSS-2023                     | 21/105           |  |

General facts and key observables



#### Universe is occupied by "thermal" photons

 $T_0 = 2.726 \,\mathrm{K}$ 



the spectrum (shape and normalization!) is thermal

 $n_{\gamma} = 411 \text{ cm}^{-3}$ 

General facts and key observables

## Conclusions from observations

The Universe is homogeneous, isotropic, hot and expanding...

#### Conclusions

interval between events gets modified

 $\Delta s^2 = c^2 \Delta t^2 - \frac{a^2(t)}{\Delta x^2} \Delta x^2$ 

in GR expansion is described by the Friedmann equation

$$\left(\frac{\dot{a}}{a}\right)^2 = H^2(t) = \frac{8\pi}{3} G \rho_{\text{density}}^{\text{energy}}$$

$$\rho_{\text{density}}^{\text{energy}} = \rho_{\text{radiation}} + \rho_{\text{matter}} + \dots$$

 in the past the matter density was higher, our Universe was "hotter" filled with electromagnetic plasma

$$\rho_{\text{matter}} \propto 1/a^3(t), \ \rho_{\text{radiation}} \propto 1/a^4(t), \ \rho_{\text{curvature}} \propto 1/a^2(t)$$

certainly known up to  $T \sim 1 \, \text{MeV} \sim 10^{10} \, \text{K}$ 

Dmitry Gorbunov (INR)

Cosmology, 3 November 2023









### Astrophysical and cosmological data are in agreement



| $\left(\frac{\dot{a}}{a}\right)^2 = H^2(t) = \frac{8\pi}{3} G\rho_{\text{density}}^{\text{energy}}$                                                  |                                                                              |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|--|--|
| (a) 3 ar density                                                                                                                                     |                                                                              |  |  |  |
| $ ho_{	ext{density}}^{	ext{energy}} =  ho_{	ext{radiation}} +  ho_{	ext{matter}}^{	ext{ordinary}} +  ho_{	ext{matter}}^{	ext{dark}} +  ho_{\Lambda}$ |                                                                              |  |  |  |
| $ \rho_{\text{radiation}} \propto 1/a^4(t) \propto T^4(t),  \rho_{\text{matter}} \propto 1/a^3(t) $                                                  |                                                                              |  |  |  |
| $ ho_{\Lambda} = \operatorname{const}$                                                                                                               |                                                                              |  |  |  |
| $rac{3H_0^2}{8\pi G}= ho_{	ext{density}}^{	ext{energy}}(t_0)\equiv ho_c$                                                                            | $\approx 0.53 \times 10^{-5}  \frac{\text{GeV}}{\text{cm}^3}$                |  |  |  |
| radiation:                                                                                                                                           | $\Omega_{\gamma} \equiv \frac{\rho_{\gamma}}{\rho_{c}} = 0.5 \times 10^{-4}$ |  |  |  |
| Baryons (H, He):                                                                                                                                     | $\Omega_{\rm B} \equiv rac{ ho_{\rm B}}{ ho_{ m c}} = 0.05$                 |  |  |  |
| Neutrino:                                                                                                                                            | $\Omega_{v}\equivrac{\Sigma ho_{v_{i}}}{ ho_{c}}<0.01$                      |  |  |  |
| Dark matter:                                                                                                                                         | $\Omega_{\rm DM}\equiv rac{ ho_{\rm DM}}{ ho}=0.27$                         |  |  |  |
| Dark energy:                                                                                                                                         | $\Omega_{\Lambda} \equiv \frac{\rho_{c}}{\rho_{c}} = 0.68$                   |  |  |  |
|                                                                                                                                                      |                                                                              |  |  |  |

Dmitry Gorbunov (INR)

Cosmology, 3 November 2023

JINR, AYSS-2023 24/105





ЯN ИR

- General facts and key observables
- 2 Mystery of Dark Energy
- 3 Evidences for Dark Matter in astrophysics and cosmology
- 4 Expanding Universe: mostly useful formulas
- 5 Neutrino
- 6 Dark Matter
  - WIMPs
  - Non-thermal mechanisms

Mystery of Dark Energy



### Dark Energy: nonclumping matter?



- estimates of Matter contribution confined in galaxies and clusters  $\rho_c - \rho_M \neq 0$  but the Universe is flat, so  $\rho_{curv} \simeq 0$
- corrections to the Hubble law : red shift brightness curves for standard candles (SN la)
- The age of the Universe
- CMB anisotropy, large scale structures (galaxy clusters formation), etc

 $\rho_{\Lambda} = 0.68 \rho_c$ 

 $ho_\Lambda \sim 10^{-5}~GeV/cm^3 \sim \left(10^{-11.5}~GeV
ight)^4$ 

Mystery of Dark Energy

#### **N**

JINR. AYSS-2023

28/105

#### Dark Energy: all evidences are from cosmology

Working hypothesis is cosmological constant  $\Lambda \approx (2.5 \times 10^{-3} \text{ eV})^4$ :  $\rho = w(t)\rho$ , w = const = -1,  $\rho = \Lambda$ 

$$S_{\Lambda} = -\Lambda \int d^4x \sqrt{-\det g_{\mu\nu}}$$

both parts contribute

$$S_{\text{grav}} = -\frac{1}{16\pi G} \int d^4 x \sqrt{-\det g_{\mu\nu}} R ,$$
$$S_{\text{matter}} = \int d^4 x \sqrt{-\det g_{\mu\nu}} \left(\frac{1}{2} g^{\lambda\rho} \partial_\lambda \phi \partial_\rho \phi - V(\phi)\right)$$

natural values

Dmitry Gorbunov (INR)

 $\Lambda_{\text{grav}} \sim 1/G^2 \sim \left(10^{19} \,\text{GeV}\right)^4 , \quad \Lambda_{\text{matter}} \sim V(\phi_{\text{vac}}) \sim (100 \,\text{GeV})^4, (100 \,\text{MeV})^4, \dots$ Why  $\Lambda$  is small? Why  $\Lambda \sim \rho_{\text{matter}}$ ? Why  $\rho_B \sim \rho_{DM} \sim \rho_{\Lambda}$  today?

Cosmology, 3 November 2023



- 1) General facts and key observables
- 2 Mystery of Dark Energy
- 3 Evidences for Dark Matter in astrophysics and cosmology
- 4 Expanding Universe: mostly useful formulas
- 5 Neutrino
- 6 Dark Matter
  - WIMPs
  - Non-thermal mechanisms



#### Astrophysical and cosmological data are in agreement



| $\left(rac{\dot{a}}{a} ight)^2 = H^2(t) = rac{8\pi}{3} G  ho_d^e$ $ ho_{	ext{density}}^{	ext{energy}} =  ho_{	ext{radiation}} +  ho_{	ext{matter}}^{	ext{ordinat}}$ | energy<br>ensity $^{ry}+ ho_{ m matter}^{ m dark}+ ho_{\Lambda}$                                                                                                                                                                     |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| $ ho_{ m radiation} \propto 1/a^4(t) \propto T^4(t) ,   ho_{ m matter} \propto 1/a^3(t)$ $ ho_{\Lambda} = { m const}$                                                 |                                                                                                                                                                                                                                      |  |  |
| $rac{3H_0^2}{8\pi G}= ho_{ m density}^{ m energy}(t_0)\equiv ho_cpprox 0$                                                                                            | $.53 \times 10^{-5}  \frac{\text{GeV}}{\text{cm}^3}$                                                                                                                                                                                 |  |  |
| radiation:<br>Baryons (H, He):<br>Neutrino:                                                                                                                           | $\begin{split} \Omega_{\gamma} &\equiv \frac{\rho_{\gamma}}{\rho_{c}} = 0.5 \times 10^{-4} \\ \Omega_{B} &\equiv \frac{\rho_{B}}{\rho_{c}} = 0.05 \\ \Omega_{\nu} &\equiv \frac{\Sigma \rho_{\nu_{I}}}{\rho_{c}} < 0.01 \end{split}$ |  |  |
| Dark matter:<br>Dark energy:                                                                                                                                          | $egin{aligned} \Omega_{DM} \equiv rac{ ho_{DM}}{ ho_c} = 0.27 \ \Omega_{\Lambda} \equiv rac{ ho_{\Lambda}}{ ho_c} = 0.68 \end{aligned}$                                                                                            |  |  |

Dmitry Gorbunov (INR)

Cosmology, 3 November 2023

JINR, AYSS-2023 30 / 105

Galactic dark halos:

## flat rotation curves



visible matter:

internal regions  $v(R) \propto \sqrt{R}$ external ("empty") regions  $v(R) \propto 1/\sqrt{R}$ 

Dmitry Gorbunov (INR)

Cosmology, 3 November 2023

Evidences for Dark Matter in astrophysics and cosmology

### Matter distribution in the Milky Way





Dmitry Gorbunov (INR)

Cosmology, 3 November 2023

JINR, AYSS-2023 32/105

船



### Dark Matter in clusters

X-rays from hot gas in clusters

$$\frac{dP}{dR} = -\mu n_e(R) m_p \frac{GM(R)}{R^2} , \quad M(R) = 4\pi \int_0^R \rho(r) r^2 dr , \quad P(R) = n_e(R) T_e(R)$$

galaxies in clusters

virial theorem

$$U + 2E_k = 0$$
$$3M \langle v_r^2 \rangle = G \frac{M^2}{R}$$





Milky Way: Virgo infall

Dmitry Gorbunov (INR)

Cosmology, 3 November 2023

JINR, AYSS-2023 33/105

Evidences for Dark Matter in astrophysics and cosmology

## Gravitational lensing in GR:

$$\alpha = 4GM/(c^2b)$$

#### **Einstein Cross**



D

η

Cosmology, 3 November 2023

$$\vec{\eta} = \frac{D_s}{D_l} \vec{\xi} - D_{ls} \vec{\alpha} \left( \vec{\xi} \right)$$

with specific refraction coefficient

 $\vec{\alpha}\left(\vec{\xi}\right) = \frac{4G}{c} \int \frac{\vec{\xi} - \vec{\xi}'}{\left|\xi - \vec{\xi}'\right|^2} d^2 \xi' \int \rho\left(\vec{\xi}', z\right) dz$ 

$$\eta = \frac{1}{D_l} \zeta - \frac{1}{D_l} \alpha$$

$$ec{\eta} = rac{D_s}{D_l}ec{\xi} - D_{ls}ec{lpha}\left(ec{\xi}
ight)$$

$$\vec{\eta} = \frac{D_s}{D_l} \vec{\xi} - D_{ls} \vec{\alpha}$$





Evidences for Dark Matter in astrophysics and cosmology

### Dark Matter in clusters

#### gravitational lensing





 $ho_{\scriptscriptstyle B} pprox 0.25 
ho_{DM}$ 



### Colliding clusters (Bullet clusters 1E0657-558)



#### gravitational lensing

# Observations in X-rays $M \simeq 10 \times m$

scale is 200 kpc clusters are at 1.5 Gpc
# Dark Matter Properties



(If) particles:

- stable on cosmological time-scale
- In nonrelativistic long before RD/MD-transition (either Cold or Warm,  $v_{RD/MD} \lesssim 10^{-3}$ )

D = 0

- (almost) collisionless
- (almost) electrically neutral

# If were in thermal equilibrium:

for bosons If not:  $\lambda = 2\pi/(M_x v_x)$ , in a galaxy  $v_x \sim 0.5 \cdot 10^{-3} \longrightarrow M_x \gtrsim 3 \cdot 10^{-22} \text{ eV}$ for fermions

Pauli blocking:



# Astrophysical and cosmological data are in agreement



| $\left(\frac{\dot{a}}{a}\right)^2 = H^2(t) = \frac{8\pi}{3} G\rho_{\text{density}}^{\text{energy}}$                                                                |                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| $ \rho_{\text{density}}^{\text{integy}} = \rho_{\text{radiation}} + \rho_{\text{matter}}^{\text{ordinary}} + \rho_{\text{matter}}^{\text{dark}} + \rho_{\Lambda} $ |                                                                              |
| $ \rho_{\text{radiation}} \propto 1/a^4(t) \propto T^4(t),  \rho_{\text{matter}} \propto 1/a^3(t) $                                                                |                                                                              |
| $\rho_{\Lambda} = \text{const}$                                                                                                                                    |                                                                              |
| $rac{3H_0^2}{8\pi G}= ho_{ m density}^{ m energy}(t_0)\equiv ho_cpprox 0.$                                                                                        | $53 \times 10^{-5}  \frac{\text{GeV}}{\text{cm}^3}$                          |
| radiation:                                                                                                                                                         | $\Omega_{\gamma} \equiv \frac{\rho_{\gamma}}{\rho_{c}} = 0.5 \times 10^{-4}$ |
| Baryons (H, He):                                                                                                                                                   | $\Omega_{\rm B} \equiv \frac{\rho_{\rm B}}{\rho_{\rm c}} = 0.05$             |
| Neutrino:                                                                                                                                                          | $\Omega_{v}\equivrac{\Sigma ho_{v_{i}}}{ ho_{c}}<0.01$                      |
| Dark matter:                                                                                                                                                       | $\Omega_{ m DM}\equivrac{ ho_{ m DM}}{ ho_c}=0.27$                          |
| Dark energy:                                                                                                                                                       | $\Omega_{\Lambda} \equiv \frac{\rho_{\Lambda}}{\rho_{c}} = 0.68$             |

Dmitry Gorbunov (INR)

Cosmology, 3 November 2023

JINR, AYSS-2023 38/105



# Inhomogeneous Universe



### Large Scale Structure

### CMB anisotropy

Dmitry Gorbunov (INR)

Cosmology, 3 November 2023

JINR, AYSS-2023 39/105



# Key observable: matter perturbations





Evidences for Dark Matter in astrophysics and cosmology









- 2 Mystery of Dark Energy
- 3 Evidences for Dark Matter in astrophysics and cosmology

## Expanding Universe: mostly useful formulas

- 5 Neutrino
- 6 Dark Matter
  - WIMPs
  - Non-thermal mechanisms

#### ЯN ИК

# Einstein equations

 $T_{\mu\nu}$ : macroscopic description  $T_{\mu\nu} = (\rho + \rho) u_{\mu} u_{\nu} - g_{\mu\nu} p$ 

in the comoving frame  $u^0 = 1$ ,  $\mathbf{u} = 0$ 

 $\frac{\frac{1}{2}\int d^4x\sqrt{-g}\mathcal{T}_{\mu\nu}\delta g^{\mu\nu}}{\text{ideal fluid with }\rho(t)\text{ and }\rho(t)}$ 

(almost) always works

 $T^{v}_{\mu} = diag(
ho, -p)$ 

$$ds^{2} = dt^{2} - a^{2}(t)\gamma_{ij}dx^{i}dx^{j},$$
$$S_{EH} = -\frac{1}{16\pi G}\int d^{4}x\sqrt{-g}R : R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi G T_{\mu\nu}$$

$$(00): \quad \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi}{3}G\rho - \frac{\varkappa}{a^2}$$

Dmitry Gorbunov (INR)

Cosmology, 3 November 2023

Friedmann equation (00):  $\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi}{3}G\rho - \frac{\varkappa}{a^2}$ 

$$abla_{\mu}T^{\mu0} = 0 \longrightarrow \dot{\rho} + 3\frac{\dot{a}}{a}(\rho + \rho) = 0$$

the equation of state

 $p = p(\rho)$ 

many-component liquid, in case of thermal equilibrium

$$-3d(\ln a) = \frac{d\rho}{\rho + \rho} = d(\ln s)$$

entropy of cosmic primordial plasma is conserved in a comoving frame

 $sa^3 = const$ 

other equations



# Examples of cosmological solutions

radiation:
$$p = \frac{1}{3}\rho$$
singular at  $t = t_s$  $\rho = \frac{\text{const}}{a^4}$ , $a(t) = \text{const} \cdot (t - t_s)^{1/2}$ , $\rho(t) = \frac{\text{const}}{(t - t_s)^2}$  $t_s = 0$ , $H(t) = \frac{\dot{a}}{a}(t) = \frac{1}{2t}$ , $\rho = \frac{3}{8\pi G}H^2 = \frac{3}{32\pi G}\frac{1}{t^2}$ In case of thermal equilibrium $T = \text{const}/a$ 

$$ho_b = rac{\pi^2}{30} g_b T^4 \,, \quad 
ho_f = rac{7}{8} rac{\pi^2}{30} g_f T^4 
ight.$$
 $ho = rac{\pi^2}{30} g_* T^4 \,, \quad g_* = \sum_b g_b + rac{7}{8} \sum_f g_f = g_* \left( T 
ight)$ 

Expanding Universe: mostly useful formulas



JINR. AYSS-2023 46/105

**NR** 



# Friedmann equation for the present Universe

$$\begin{aligned} \mathcal{H}^2 &\equiv \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi}{3}G(\rho_{\rm M} + \rho_{rad} + \rho_{\Lambda} + \rho_{\rm curv}) \\ &\frac{8\pi}{3}G\rho_{\rm curv} = -\frac{\varkappa}{a^2}, \quad \rho_c \equiv \frac{3}{8\pi G}H_0^2 \\ \rho_c &= \rho_{\rm M,0} + \rho_{rad,0} + \rho_{\Lambda,0} = \rho_c = 0.52 \cdot 10^{-5}\frac{\text{GeV}}{\text{cm}^3}, \quad \text{for } h = 0.7 \\ &\Omega_X \equiv \frac{\rho_{X,0}}{\rho_c} \end{aligned}$$

$$\left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi}{3}G\rho_{c}\left[\Omega_{M}\left(\frac{a_{0}}{a}\right)^{3} + \Omega_{rad}\left(\frac{a_{0}}{a}\right)^{4} + \Omega_{\Lambda} + \Omega_{curv}\left(\frac{a_{0}}{a}\right)^{2}\right]$$

Expanding Universe: mostly useful formulas



JINR. AYSS-2023 48/105

**NR** 



# Microscopic processes in the expanding Universe

A competition between scattering, decays, etc and expansion

for general processes one should solve kinetic equations

$$\frac{dn_{X_i}}{dt} + \frac{3Hn_{X_i}}{2} = \sum (production - destruction)$$

Boltzmann equation in a comoving volume:  $\frac{d}{dt}(na^3) = a^3 \int \dots$ 

production:

desrtuction:

$$\sigma(A + X \rightarrow C + B)n_A n_X, \ \ \Gamma(X \rightarrow F + G)n_X \cdot M_X/E_X, \ \ \text{etc}$$

Fast direct and inverse processes,  $\Gamma \gtrsim H$ , are in equilibrium,  $\Sigma(\ ) = 0$  and thermalize particles Expanding Universe: mostly useful formulas



**NR** 

# Outline

- General facts and key observables
- 2 Mystery of Dark Energy
- 3 Evidences for Dark Matter in astrophysics and cosmology
- 4 Expanding Universe: mostly useful formulas
- 5 Neutrino
- 6 Dark Matter
  - WIMPs
  - Non-thermal mechanisms



Neutrino

# Neutrino freeze-out

$$T > m_e$$
  $e^+e^- \leftrightarrow v\bar{v}, ev \leftrightarrow ev$ 

$$\sigma_v \sim G_F^2 E^2$$

### neutrino interaction rate

$$au_{v} = rac{1}{\langle \sigma_{v} n v \rangle} \sim rac{1}{G_{F}^{2} T^{5}} \qquad \qquad H^{2} = rac{8\pi}{3 M_{Pl}^{2}} rac{\pi^{2}}{30} g_{*} T^{4} \equiv rac{T^{4}}{M_{Pl}^{*2}}$$

$$au_{v}(T) \sim H^{-1}(T) = rac{M_{Pl}^{*}}{T^{2}}$$
 $T_{v,f} \sim \left(rac{1}{G_{F}^{2}M_{Pl}^{*}}
ight)^{1/3} \sim 2 \div 3 \; {
m MeV}$ 

Dmitry Gorbunov (INR)

Neutrino



# Helium abundance (NO chemical equilibrium)

Neutrons remain mostly in helium

$$n_{^{4}\text{He}}(T_{NS}) = \frac{1}{2}n_n(T_{NS}),$$

neutron-to-proton ratio

$$au_n \approx 880 \text{ s}$$

$$\frac{n_{n}(T_{NS})}{n_{p}(T_{NS})} \approx \frac{1}{5} \cdot e^{-\frac{NS}{r_{n}}} \cdot e^{-\frac{Hv}{T_{n}}} \approx \frac{1}{7},$$

$$Y_{p} \equiv X_{4}_{He} = \frac{m_{4}_{He} \cdot n_{4}_{He}(T_{NS})}{m_{p}(n_{p}(T_{NS}) + n_{n}(T_{NS}))} = \frac{2}{\frac{n_{p}(T_{NS})}{n_{n}(T_{NS})} + 1} \approx 25\%$$

from observations of relic helium abundance:

$$\Delta N_{v, eff} \leq 0.2 \; ,$$

$$\left|\frac{u_v}{T_n}\right| \lesssim 0.01$$



Dmitry Gorbunov (INR)

Cosmology, 3 November 2023

JINR, AYSS-2023 54/105

Neutrino



# Cosmological limits: sub-eV scale... 14 years ago!!



Neutrino

# Baryogenesis

### Sakharov conditions of successful baryogenesis

- B-violation  $(\Delta B \neq 0) XY \dots \rightarrow X'Y' \dots B$
- C- & CP-violation  $(\Delta C \neq 0, \Delta CP \neq 0) \bar{X} \bar{Y} \cdots \rightarrow \bar{X}' \bar{Y}' \dots \bar{B}$
- processes above are out of equilibrium  $X'Y' \dots B \rightarrow XY \dots$

At 100 GeV $\lesssim T \lesssim 10^{12}$  GeV nonperturbative processes (EW-sphalerons) violate *B*,  $L_{\alpha}$ , so that only three charges are conserved out of four, e.g.

$$\mathsf{B}-\mathsf{L}\,,\quad \mathsf{L}_{\boldsymbol{\theta}}-\mathsf{L}_{\boldsymbol{\mu}}\,,\quad \mathsf{L}_{\boldsymbol{\theta}}-\mathsf{L}_{\boldsymbol{\tau}}$$

and  $B = \alpha \times (B-L), L = (\alpha - 1) \times (B-L)$ 

Leptogenesis: Baryogenesis from lepton asymmetry of the Universe ... due to sterile neutrinos

Why  $\Omega_B \sim \Omega_{DM}$  ?

antropic principle?



# Outline



- 2 Mystery of Dark Energy
- 3 Evidences for Dark Matter in astrophysics and cosmology
- 4 Expanding Universe: mostly useful formulas
- 5 Neutrino
- Dark Matter
  - WIMPs
  - Non-thermal mechanisms

Dark Matter

# **Dark Matter Properties**

$$p = 0$$

## (If) particles:

If not:

Pauli blocking:

- stable on cosmological time-scale
- 2 nonrelativistic long before RD/MD-transition (either Cold or Warm,  $v_{RD/MD} \lesssim 10^{-3}$ )
- (almost) collisionless
- (almost) electrically neutral

## If were in thermal equilibrium:

## $M_X \gtrsim 1 \text{ keV}$

for bosons

 $\lambda=2\pi/(M_{\rm X}v_{\rm X})$ , in a galaxy  $v_{\rm X}\sim 0.5\cdot 10^{-3} \longrightarrow M_{\rm X}\gtrsim 3\cdot 10^{-22}$  eV

for fermions  $M \ge 750 \text{ eV}$ 

 $M_{\rm X} \gtrsim 750 \ {\rm eV}$ 

$$f(\mathbf{p},\mathbf{x}) = \frac{\rho_{\mathsf{x}}(\mathbf{x})}{M_{\mathsf{x}}} \cdot \frac{1}{\left(\sqrt{2\pi}M_{\mathsf{x}}v_{\mathsf{x}}\right)^3} \cdot \mathrm{e}^{-\frac{\mathbf{p}^2}{2M_{\mathsf{x}}^2v_{\mathsf{x}}^2}} \bigg|_{\mathbf{p}=0} \leq \frac{g_{\mathsf{x}}}{(2\pi)^3}$$



# Dark Matter Candidates

- WIMPs (neutralino, ...)
- sterile neutrinos
- gravitino
- axion
- Heavy relics
- (Topological) defects
- Massive Astrophysical Compact Halo Objects
- Primordial black hole remnants

#### WIMPs

# Freeze-out of nonrelativistic Dark Matter

Assumptions:

- no  $X \bar{X}$  asymmetry either  $X = \overline{X}$  or  $n_x = n_{\overline{x}}$
- 2 @  $T \leq M_X$  in thermal equilibrium with plasma

$$n_{\rm X}=n_{\rm \bar{X}}=g_{\rm X}\left(\frac{M_{\rm X}T}{2\pi}\right)^{3/2}{\rm e}^{-M_{\rm X}/T}$$

 $X\bar{X} \longrightarrow$  light particles

 $H\equiv T^2/M_{_{
m Pl}}^*,~~M_{_{
m Pl}}^*=M_{_{
m Pl}}/1.66\sqrt{g_*}$ freeze-out temperature  $T_f$ 

$$n_{\rm X} \langle \sigma_{\rm ann} v \rangle = H(T_f) \longrightarrow T_f = \frac{M_{\rm X}}{\ln\left(\frac{g_{\rm X} M_{\rm X} M_{\rm Pl}^* \sigma_0}{(2\pi)^{3/2}}\right)}$$

Bethe formula:

s-wave:  $\sigma_{ann} = \frac{\sigma_0}{v}$ 

(e.g. neutrons)

WIMPs

# Weakly Interacting Massive Particles

density after freeze-out:  

$$n_{X}(T_{f}) = \frac{T_{f}^{2}}{M_{P/}^{*}\sigma_{0}}$$
present density:  

$$n_{X}(T_{0}) = \left(\frac{a(T_{f})}{a(T_{0})}\right)^{3} n_{X}(T_{f}) = \left(\frac{s_{0}}{s(T_{f})}\right) n_{X}(T_{f}) \propto \frac{1}{T_{f}}$$

 $X + \overline{X}$  contribution to critical density:

$$\Omega_{\rm X} = 2 \frac{M_{\rm X} n_{\rm X}(T_0)}{\rho_c} = 7.6 \frac{s_0 \ln \left(\frac{g_{\rm X} M_{\rm Pl}^* M_{\rm X} \sigma_0}{(2\pi)^{3/2}}\right)}{\rho_c \sigma_0 M_{\rm Pl} \sqrt{g_*(T_f)}}$$
$$= 0.1 \cdot \left(\frac{(10 \text{ TeV})^{-2}}{\sigma_0}\right) \frac{10}{\sqrt{g_*(T_f)}} \ln \left(\frac{g_{\rm X} M_{\rm Pl}^* M_{\rm X} \sigma_0}{(2\pi)^{3/2}}\right) \cdot \frac{1}{2h^2}$$



# WIMPs: discussion

$$\Omega_{\rm X} = 0.1 \cdot \left(\frac{(10 \text{ TeV})^{-2}}{\sigma_0}\right) \frac{10}{\sqrt{g_*(T_f)}} \ln \left(\frac{g_{\rm X} M_{\rm Pl}^* M_{\rm X} \sigma_0}{(2\pi)^{3/2}}\right) \cdot \frac{1}{2h^2}$$

- natural DM: subweak-scale cross section  $\sigma_0 \sim 0.01 \times \sigma_W$ say,  $M_X \sim 1$  TeV or X is not a weak gauge eigenstate
- naturaly "light" unitarity  $\sigma_0 \lesssim \frac{4\pi}{M_c^2} \longrightarrow M_X \lesssim 100 \text{ TeV}$
- all stable particles with smaller σ<sub>0</sub> are forbidden !!
- WIMPs remain in kinetic equilibrium with plasma till  $T \sim 10 \,\text{MeV}$

this is Cold Dark Matter,  $v_{RD/MD} \ll 10^{-3}$ 

WIMPs may form dark halos (clumps) much lighter than dwarf galaxies

WIMPs



a hit

 $\propto n^2$ 

Weakly IMPs are mostly welcome (e.g. LSP in SUSY)

We can fully explore the model !!

• Direct searches for Galactic Dark Matter ( $v \sim 10^{-3}$ )

$$X +$$
nuclei  $\rightarrow X +$  nuclei  $+ \Delta E$ 

 Can search for WIMPs in cosmic rays: products of WIMPs annihilation (in Galactic center, dwarf galaxies, Sun)

$$X+ar{X}
ightarrow 
hoar{
ho},\ e^+e^-,\ v,\gamma,\dots$$

 Can search for WIMPs in collision experiments (LHC): missing

$$X + \bar{X} \leftrightarrow SM + SM' + \dots$$



# Prospects in WIMP searches



Dark Matter



ä

# Constraining the DM model parameter space



Dmitry Gorbunov (INR)

Cosmology, 3 November 2023

Dark Matter WIMPs

# Present indirect limits on DM annihilation (clumps..)



Dmitry Gorbunov (INR)

Dark Matter

WIMPs

# LHC limits for annihilation

1502.01518



#### WIMPs

# If thermal CDM but not Weakly IMPs?

We still can study the model if DM annihilates (partly) into SM particles

But DM particle X can be light and feebly coupled (t-channel)

$$\sigma_0 \sim rac{\xi^4}{M_X^2}$$

### $\xi$ is not a gauge coupling within GUT !

- With small  $\sigma_0$  one needs entropy production
- $\sigma_0$  may be increased by s-channel resonance,  $M_Y \approx 2M_X$ ۰
- annihilation can be amplified by co-annihilation channels,  $X + A \rightarrow SM$ ٠
- With light messangers between Dark and Visible sectors many estimates ٠ change, say  $\sigma_0 = \sigma_0(v)$
- DM interaction at freeze-out and now are not the same say, Sommerfield enhancement of the annihilation of slow particles  $v \sim 10^{-3}$





# Illustration with a simple example of scalar DM

most general renormalizable coupled to SM:

 $Z_2$ -invariant Higgs ( $\Phi$ ) portal

$$\Delta \mathscr{L} = \frac{1}{2} g^{\mu\nu} \partial_{\mu} S \partial_{\nu} S - \frac{1}{2} m^2 S^2 + \frac{g^2}{2} S^2 \Phi^{\dagger} \Phi - \frac{\lambda}{4} S^4$$

Options:

• freeze-out:

sufficiently large  $g^2$ 

$$\sigma_{hh \to SS} \times n_h \gtrsim H \rightarrow \sigma_{SS \to ...} = \sigma_0, \text{ e.g. } \frac{g^4}{(4\pi ...)^2 m_S^2} = \sigma_0$$

• freeze-in:

intermediate  $g^2$ 

$$\dot{n}_{S} + 3Hn_{S} = \sigma_{hh \to SS} n_{h}^{2} \rightarrow \frac{n_{S}}{s} = \# \int dT \frac{n_{h}^{2}}{sHT} \times \frac{g^{4}}{T^{2}} \sim g^{4} \frac{M_{Pl}}{m_{S}} \rightarrow$$

$$\Omega_S \propto g^4 ~
ightarrow~g^2 pprox 10^{-11}$$

Dmitry Gorbunov (INR)

Cosmology, 3 November 2023

still natural...



# Free massive scalar field

$$g^{2} = 0$$

$$\mathscr{L} = rac{1}{2} g^{\mu
u} \partial_\mu \phi \partial_
u \phi - rac{1}{2} m_\phi^2 \phi^2$$

Homogeneous scalar field in the expanding Universe

 $\ddot{\phi} + \mathbf{3}H\dot{\phi} + m_{\phi}^2\phi = 0$ 

Two-stage evolution:

$$\begin{array}{ll} m_{\phi} < H(t) & \Longrightarrow & \phi = \phi_i = {\rm const} \\ m_{\phi} > H(t) & \Longrightarrow & \rho = \langle E_k \rangle - \langle E_\rho \rangle = 0 \,, \quad \rho \sim m_{\phi}^2 \phi^2 \propto 1/a^3 \end{array}$$

• dust-like substance in the late Universe,  $\Omega \propto m_{\phi}^{1/2} \phi_i^2$ depends on initial conditions

- presureless at spatial scales  $I > M_{Pl}^{1/2}/\rho^{1/4} m_{\phi}^{1/2}$  fuzzy DM
- isocurvature mode:  $\delta \rho_{\phi} \propto \delta H$ ,  $\delta f_i$



# scalar DM without dependence on initial field

$$0 \neq g^2 < 10^{-11}$$
  $Z_2$ -invariant Higgs ( $\Phi$ ) portal

$$\Delta \mathscr{L} = \frac{1}{2} g^{\mu\nu} \partial_{\mu} S \partial_{\nu} S - \frac{1}{2} m^2 S^2 + g^2 S^2 \Phi^{\dagger} \Phi - \frac{\lambda}{4} S^4$$

Higgs particles in plasma change the potential:

$$g^2 S^2 \Phi^{\dagger} \Phi \rightarrow g^2 S^2 T^2/3$$

 $Z_2$  symmetry is broken after reheating by the plasma contribution


# Temperature decrease restores $Z_2$

2004.03410

$$\Delta \mathscr{L} = \frac{1}{2} g^{\mu\nu} \partial_{\mu} S \partial_{\nu} S - \frac{1}{2} m^2 S^2 + \frac{g^2 S^2 T^2}{3} - \frac{\lambda}{4} S^4$$



And the correct amount of DM by classical oscillating field

$$g^2 \simeq 10^{-12} \times \left(\frac{\lambda}{10^{-6}}\right)^{6/5} \times \left(\frac{10^6\,\text{GeV}}{m}\right)^2$$

Dmitry Gorbunov (INR)

#### 

# Dark Matter: many well-motivated candidates

| ٩                                                               | WIMPs                            | related to EW scale, SUSY                     |
|-----------------------------------------------------------------|----------------------------------|-----------------------------------------------|
| ٩                                                               | sterile neutrinos                | active neutrino oscillations                  |
| ٩                                                               | light scalar field               | string theory                                 |
| ٩                                                               | axion                            | strong CP-problem                             |
| ٩                                                               | gravitino                        | local SUSY                                    |
| ٩                                                               | Heavy relics                     | GUTs                                          |
| ۲                                                               | (Topological) defects            | GUTs                                          |
| <ul> <li>Massive Astrophysical Compact Heavy Objects</li> </ul> |                                  |                                               |
| ٩                                                               | Primordial black hole (remnants) | Phase transitions exotic inflation, reheating |
|                                                                 | Multicomponent Dark              | <b>Matter ?</b> $\gamma, \nu, H, He$          |
|                                                                 |                                  |                                               |



# Standard cosmological model $ds^2 = dt^2 - a^2(t)dx^2$

$$\left(\frac{\dot{a}}{a}\right)^{2} \equiv H^{2} = H_{0}^{2} \left[\Omega_{\Lambda} + (\Omega_{DM} + \Omega_{B} + \Omega_{\nu, m \neq 0}) \left(\frac{a_{0}}{a}\right)^{3} + (\Omega_{\gamma} + \Omega_{\nu, m = 0}) \left(\frac{a_{0}}{a}\right)^{4}\right]$$

- $\bullet \ \ T_{\gamma}\,{=}\,2.735\,K, \quad \Longrightarrow \quad \Omega_{\gamma}\,{\sim}\,10^{-5}$
- $N_v \approx 3$ ,  $\Sigma m_v < 0.2 \, \mathrm{eV}$   $\implies$   $\Omega_{v, \neq 0}, \, \Omega_{v, 0} \sim 10^{-5}$  ?
- $\Omega_B = 4.5\% \implies \eta_B \equiv n_B/n_\gamma = 6 \times 10^{-10}$
- $\Omega_{DM} = 27.5\%$
- $H_0 = 67 \, {\rm km/s/Mpc} \implies 
  ho_0 = 5 \, {\rm GeV/m^3}$
- $\Omega_{\Lambda} = 68\% \implies$  flat space
- adiabatic, gaussian matter perturbations

$$\langle \left(\frac{\delta \rho}{\rho}\right)^2 \rangle \sim A_S \int \frac{dk}{k} \left(\frac{k}{k_*}\right)^{n_S - 1}$$

with  $A_S = 3 \times 10^{-9}$  and  $n_S = 0.97$ 

- no tensor perturbations,  $r \equiv A_T / A_S < 0.05$
- reionization at  $z \equiv a_0/a = 10$

| Dark Matter | Non-thermal mechanisms |
|-------------|------------------------|
|-------------|------------------------|

 $n_{\rm x} = n_{\rm \overline{x}}$ 

# Weakly Interacting Massive Particles

Assumptions:

- no  $X \bar{X}$  asymmetry
- 2 @  $T < M_X$  in thermal equilibrium with plasma

$$n_{\rm X}=n_{\rm \bar{X}}=g_{\rm X}\left(\frac{M_{\rm X}T}{2\pi}\right)^{3/2}{\rm e}^{-M_{\rm X}/T}$$

 $X\bar{X} \longrightarrow$  light particles

freeze-out temperature  $T_f$ 

 $M_{\rm Pl}^* = M_{Pl}/1.66\sqrt{g_*}$ 

$$\frac{1}{n_{\rm X}}\frac{1}{\langle\sigma_{\rm ann}\nu\rangle} = H^{-1}(T_f) \longrightarrow T_f = \frac{M_{\rm X}}{\ln\left(\frac{g_{\rm X}M_{\rm X}M_{\rm Pl}^*\sigma_0}{(2\pi)^{3/2}}\right)}$$

Bethe formulae:

s-wave:  $\sigma_{ann} = \frac{\sigma_0}{v}$ 

#### Non-thermal mechanisms

# Weakly Interacting Massive Particles

density after freeze-out:  

$$n_{X}(T_{f}) = \frac{T_{f}}{M_{\text{P}/\sigma_{0}}^{*}}$$
present density:  

$$n_{X}(T_{0}) = \left(\frac{a(T_{f})}{a(T_{0})}\right)^{3} n_{X}(T_{f}) = \left(\frac{s_{0}}{s(T_{f})}\right) n_{X}(T_{f}) \propto \frac{1}{T_{f}} \propto \frac{1}{M_{X}}$$

$$X + \bar{X} \text{ contribution to critical density:}$$

$$\Omega_{X} = 2 \frac{M_{X} n_{X}(T_{0})}{\rho_{c}} = 7.6 \frac{s_{0} \ln \left(\frac{g_{X} M_{\text{P}|}^{*} M_{X} \sigma_{0}}{(2\pi)^{3/2}}\right)}{\rho_{c} \sigma_{0} M_{\text{P}|} \sqrt{g_{*}(T_{f})}}$$

$$= 0.1 \cdot \left(\frac{(10 \text{ TeV})^{-2}}{\sigma_{0}}\right) \frac{0.3}{\sqrt{g_{*}(T_{f})}} \ln \left(\frac{g_{X} M_{\text{P}|}^{*} M_{X} \sigma_{0}}{(2\pi)^{3/2}}\right) \cdot \frac{1}{2h^{2}}$$

natural dark matter:  $\sigma_0 \sim 0.01 \times \sigma_W$ 

naturaly "light"

 $\sigma_0 \lesssim rac{4\pi}{M_Y^2} \longrightarrow M_X \lesssim 100 \ {
m TeV}$ 

~

Dark Matter

Non-thermal mechanisms

### Recent results of (in)direct searches





# Decoupling of relativistic specia (DM?)

Thermal equilibrium is forbidden:

 $T_d \gg M_X$ , and then  $n_X/s = \text{const}$ 

$$\Omega_{3/2} = \frac{m_X \cdot n_{X,0}}{\rho_c} = \frac{m_X \cdot s_0}{\rho_c} \frac{n_{X,0}}{s_0} = 0.2 \frac{M_X}{100 \text{ eV}} \left(\frac{g_X}{2}\right) \cdot \left(\frac{100}{g_*(T_d)}\right) \cdot \frac{1}{2h^2}$$

- If fermions: limit from Pauli-blocking
- Generally: too hot at Equality: from structure formation we need at  $T_{Eq} \sim 1 \text{ eV}$ ,  $v_{DM} \lesssim 10^{-3}$

NB: for  $M_X = 100 \text{ eV}$  at Equality ( $T_{Eq} \sim 1 \text{ eV}$ ) X-particle velocities are



# Decoupling of relativistic specia (DM?)

Thermal equilibrium is forbidden:

 $T_d \gg M_X$ , and then  $n_X/s = \text{const}$ 

$$\Omega_{3/2} = \frac{m_X \cdot n_{X,0}}{\rho_c} = \frac{m_X \cdot s_0}{\rho_c} \frac{n_{X,0}}{s_0} = 0.2 \frac{M_X}{100 \text{ eV}} \left(\frac{g_X}{2}\right) \cdot \left(\frac{100}{g_*(T_d)}\right) \cdot \frac{1}{2h^2}$$

- If fermions: limit from Pauli-blocking
- Generally: too hot at Equality: from structure formation we need at  $T_{Eq} \sim 1 \text{ eV}$ ,  $v_{DM} \lesssim 10^{-3}$

NB: for  $M_X = 100 \text{ eV}$  at Equality ( $T_{Eq} \sim 1 \text{ eV}$ ) X-particle velocities are  $\mathbf{V} \simeq 10^{-2}$ 



## Other Dark Matter candidates are not in equilibrium!

- WIMPs (neutralino, ...)  $\leftarrow$  thermal !
- sterile neutrinos ← Price: sensitive to mass and couplings!
- gravitino <= Price: sensitive to mass, couplings and reheating temperature !!!
- Heavy relics
- (Topological) defects
- Massive Astrophysical Compact Halo Objects
- Primordial black hole remnants







Dmitry Gorbunov (INR)

Cosmology, 3 November 2023

JINR, AYSS-2023 82/105

# DM keV sterile neutrino

Sterile neutrino of keV scale mass provides the Warm Dark Matter Relevant parameters: mass  $M_N \sim 1-10$  keV and active-sterile neutrino mixing angle  $\theta \ll 1$ 

#### Bounds on mass

- Phase space density (refined Pauli-blocking):  $M_N \gtrsim 0.3$  keV
- Lyman- $\alpha$  forest:  $M_N \gtrsim 10 \text{ keV}$

#### Bound on mass $M_N$ and mixing angle $\theta$

• X-ray observation:  $N \rightarrow v + \gamma$ , a peak at  $\omega_{\gamma} = M_N/2$  of intensity  $\propto \theta^2$ 

Production mechanism

• Dodelson-Widrow (thermal) scenario:  $v_a \rightarrow N$  due to mixing,

 $\rho_N \propto \theta^2$ 

- Primordial abundance: physics at higher energies
  - Lepton asymmetries
  - Production from inflaton decay
  - ► etc.





**NR** 

# DM keV sterile neutrino

Sterile neutrino of keV scale mass provides the Warm Dark Matter Relevant parameters: mass  $M_N \sim 1-10$  keV and active-sterile neutrino mixing angle  $\theta \ll 1$ 

#### Bounds on mass

- Phase space density (refined Pauli-blocking):  $M_N \gtrsim 0.3$  keV
- Lyman- $\alpha$  forest:  $M_N \gtrsim 10 \text{ keV}$

#### Bound on mass $M_N$ and mixing angle $\theta$

• X-ray observation:  $N \rightarrow v + \gamma$ , a peak at  $\omega_{\gamma} = M_N/2$  of intensity  $\propto \theta^2$ 

Production mechanism

• Dodelson-Widrow (thermal) scenario:  $v_a \rightarrow N$  due to mixing,

 $\rho_N \propto \theta^2$ 

#### is ruled out

- Primordial abundance: physics at higher energies
  - Lepton asymmetries
  - Production from inflaton decay
  - etc.





Dark Matter

Non-thermal mechanisms

## Free scalar field as Cold Dark Matter (axion)

Homogeneous scalar field

$$\ddot{\phi} + 3H\dot{\phi} + m^2\phi = 0$$

at  $m \ll H$  no evolution:  $\phi = \text{const}$ , at  $m \gg H$  it oscillates, so

$$\rho = \frac{1}{2} \left( \frac{d\phi}{dt} \right)^2 + \frac{m^2}{2} \phi^2 = \langle E_k \rangle + \langle E_p \rangle = 2 \langle E_p \rangle , \quad \mathbf{p} = \frac{1}{2} \left( \frac{d\phi}{dt} \right)^2 - \frac{m^2}{2} \phi^2 = \langle E_k \rangle - \langle E_p \rangle = \mathbf{0} ,$$

behaves as nonrelativistic (dark) matter (dust-like component) !!

nonperturbative CP-violation in QCD

$$L_{\theta} = \tfrac{\alpha_{\rm S}}{8\pi} \left( \theta_0 + {\rm Arg}\left( {\rm Det} \hat{M}_q \right) \right) G^a_{\mu\nu} \tilde{G}^{\mu\nu\,a} \equiv \tfrac{\alpha_{\rm S}}{8\pi} \cdot \theta \cdot G^a_{\mu\nu} \tilde{G}^{\mu\nu\,a} \, .$$

$$\begin{split} \theta &\to \bar{\theta}(x) = \theta + C_g \frac{a(x)}{f_{PQ}} \ . \\ \mathscr{L} &= \frac{f_{PQ}^2}{2} \cdot \left(\frac{d\bar{\theta}}{dt}\right)^2 - \frac{m_a^2(T)}{2} f_{PQ}^2 \bar{\theta}^2 \ , \\ m_a(T) &\simeq 0 \ , T > \Lambda_{QCD} \quad \text{and} \quad m_a(T) \simeq m_a \simeq m_\pi f_\pi / f_{PQ} \end{split}$$

$$\Omega_a \simeq 0.2 \cdot \overline{\theta}_i^2 \cdot \left(\frac{4 \cdot 10^{-6} \text{ eV}}{m_a}\right) \cdot \frac{1}{2h^2}$$

Check this Dmitry Gorbunov (INR)

Cosmology. 3 November 2023

Non-thermal mechanisms





Dark Matter

Non-thermal mechanisms

## Inhomogeneous Universe



#### Large Scale Structure

#### CMB anisotropy

Dmitry Gorbunov (INR)

Cosmology, 3 November 2023

JINR, AYSS-2023 89/105



## Small inhomogeneities in the expanding Universe

matter perturbations (perfect fluid approximation)

$$T_0^0 o 
ho(t) + \delta 
ho(\eta, \mathbf{x}), \quad T_i^0 o \partial_i v(\eta, \mathbf{x}), \quad T_j^i o \delta 
ho(\eta, \mathbf{x})$$

gravitational perturbations (scalar and tensor modes)

$$ds^2 = a^2(\eta) \left[ (1 + 2\Phi(\eta, \mathbf{x})) d\eta^2 - (1 + 2\Psi(\eta, \mathbf{x})) d\mathbf{x}^2 - h_{ij}^{TT}(\eta, \mathbf{x}) dx^i dx^j \right]$$

Equations for linear perturbations,  $\delta \rho / \rho \equiv \delta \ll$  1,  $\Phi \ll$  1, etc

$$R_{\mu\nu} + \frac{1}{2} R g_{\mu\nu} = 8\pi G T_{\mu\nu} \rightarrow \dots$$
$$\nabla_{\mu} T^{\mu\nu} = 0 \rightarrow \dots$$



# These inhomogeneities (matter perturbations)

originate from the initial matter density (scalar) perturbations

 $\delta\rho/\rho\sim\delta T/T\sim$  10^-4, which are

adiabatic 
$$\delta\left(\frac{n_B}{s}\right) = \delta\left(\frac{n_{DM}}{s}\right) = \delta\left(\frac{n_L}{s}\right)$$
Gaussian  $\langle \frac{\delta\rho}{\rho}(\mathbf{k}) \frac{\delta\rho}{\rho}(\mathbf{k}') \rangle \propto \left(\frac{\delta\rho}{\rho}(\mathbf{k})\right)^2 \times \delta(\mathbf{k} + \mathbf{k}')$ 
flat spectrum  $\langle \left(\frac{\delta\rho}{\rho}(\mathbf{x})\right)^2 \rangle = \int_0^\infty \frac{d\mathbf{k}}{\mathbf{k}} \mathscr{P}_S(\mathbf{k}) \qquad \mathscr{P}_S(\mathbf{k}) \approx \text{const}$ 
LSS and CMB  $\mathscr{P}_S \equiv A_S \times \left(\frac{k}{k_*}\right)^{n_S - 1} \qquad A_S \approx 2.5 \times 10^{-9}, \quad n_S \approx 0.97$ 

100 1000 1000



## Subhorizon modes (k/a > H) at various stages



Dmitry Gorbunov (INR)

Cosmology, 3 November 2023

## On formulas...

• short waves,  $k\eta_{eq} \gg 1$ 

 $R_B \equiv 3
ho_B/4
ho_\gamma$ 

$$\begin{split} \delta_{\gamma} = & \Phi_{(i)} \cdot \left[ -324 \cdot (1+R_B) \, l^2(\Omega_M) \, \frac{\Omega_{CDM}}{\Omega_M} \, (1+z_{eq}) \, \frac{\log(0.2k\eta_{eq})}{(k\eta_0)^2} \right. \\ & \left. + \frac{6}{(1+R_B)^{1/4}} \cos\left(k \, \int_0^{\eta} \, d\tilde{\eta} \, u_s\right) \right] \, , \end{split}$$

• long waves,  $k\eta_{rec} \ll 1$ 

$$\delta_{\gamma} = -rac{12}{5} \Phi_{(i)} = ext{const}$$

• intermediate waves ...

$$\delta_{\gamma}(\mathbf{k},\eta) = -4 \left[1 + R_B(\eta)\right] \Phi(\mathbf{k},\eta) + 4 \Phi_{(i)}(\mathbf{k}) \cdot A(k,\eta) \cos\left(k \int_0^{\eta} u_s d\tilde{\eta}\right) \,,$$



# Cosmological (particle) horizon $I_H(t)$

### distance covered by photons emitted at t = 0

the size of causally-connected region — the size of the visible part of the Universe

in conformal coordinates:  $ds^2 = 0 \longrightarrow |d\mathbf{x}| = d\eta$ coordinate size of the horizon equals  $\eta(t) = \int d\eta$ 

$$I_{H}(t) = a(t)\eta(t) = a(t)\int_{0}^{t} \frac{dt'}{a(t')}$$



#### dust

$$I_{H}(t) = 3t = \frac{2}{H(t)}$$
,  $I_{H,0} = 2.6 \times 10^{28}$  cm  $(h = 0.7)$ 

Dmitry Gorbunov (INR)



### Last scattering: $\gamma e \rightarrow \gamma e$

$$\sigma_{\rm T} = \frac{8\pi}{3} \frac{\alpha^2}{m_e^2} \approx 0.67 \cdot 10^{-24} \, {\rm cm}^2 \,, \qquad \tau_{\gamma} = \frac{1}{\sigma_{\rm T} \cdot n_e(T)}$$

last scattering:

 $au_{\gamma}(T_f) \simeq H^{-1}(T_f) \simeq t_f$ 

$$T_f = 0.26 \text{ eV}, \quad z = 1100, \quad t_f = 370\,000 \text{ yr}$$

for general processes one should solve kinetic equations

$$\frac{dn_{X_i}}{dt} + 3Hn_{X_i} = \int (production - destruction)$$

Boltzmann equation in a comoving volume:  $\frac{d}{dt}(na^3) = a^3 \int \dots$ 

Dmitry Gorbunov (INR)

Cosmology, 3 November 2023

JINR, AYSS-2023 95/105



# Recombination: horizon

### matter domination:

$$I_{\rm H,r} = 2H_r^{-1}$$

$${\cal H}_r^2 = rac{8\pi}{3} G
ho_{
m M}(t_r) = rac{8\pi}{3} G
ho_{
m M,0} \left(rac{a_0}{a_r}
ight)^3 = rac{8\pi}{3} G
ho_c \Omega_{
m M,0} (1+z_r)^3 \ .$$

/⊦

at recombination:

$$I_{\rm H,r} = \frac{2}{H_0 \sqrt{\Omega_{\rm M}}} \frac{1}{(1+z_r)^{3/2}}$$
$$I_{\rm H,r}(t_0) = I_{\rm H,r} \times \frac{a_0}{a_r} = \frac{2}{H_0 \sqrt{\Omega_{\rm M}}} \frac{1}{\sqrt{1+z_r}}$$

today:

$$\frac{I_{H_0}}{I_{\mathrm{H},r}(t_0)} \sim \sqrt{1+z_r} \simeq 30$$



Cosmology, 3 November 2023

Dark Matter

90° 2°



angular distance:

$$d_{ph} = r_a(z) \Delta \theta$$

$$\chi_r = \int_{t_r}^{t_0} \frac{dt}{a(t)} , \quad \Delta \theta_r = \frac{I_{H,r}}{r_a(z_r)}$$

$$d_{conf} = \sinh \chi_r \Delta \theta$$

$$r_a(z_r) = (1+z_r)^{-1} \cdot a_0 \cdot \sinh \chi_r$$

$$\Delta heta_r = rac{1}{\sqrt{z_r+1}} \,, \ \ \Omega_{curv} = \Omega_\Lambda = 0 \;.$$

$$\Delta \theta_{r} = \frac{1}{\sqrt{z_{r}+1}} \frac{2\sqrt{\Omega_{curv}/\Omega_{M}}}{\sinh\left(2\sqrt{\Omega_{curv}/\Omega_{M}}\right)}$$
$$I = \int_{0}^{1} \frac{dy}{\sqrt{1 + \frac{\Omega_{A}}{\Omega_{M}}y^{6}}}$$



Angular scale

0.2°

0.5

Dmitry Gorbunov (INR)

Cosmology, 3 November 2023

 $\Delta \theta_{r,s} =$ 



Dmitry Gorbunov (INR)

Cosmology, 3 November 2023



# CMB map



Dmitry Gorbunov (INR)

Cosmology, 3 November 2023

JINR, AYSS-2023 99/105

# Mode evolution

- Amplitude remains constant, while superhorizon, e.g. k/a < H
- Subhorizon Inhomogeneities of DM start to grow at MD-stage,  $\delta \rho_{CDM} / \rho_{CDM} \propto a$  from  $T \approx 0.8 \text{ eV}$ Smaller objects (first stars, dwarf galaxies) are first to form
- Subhorizon Inhomogeneities of baryons join those of DM only after recombination,  $\delta \rho_{CDM} / \rho_{CDM} \propto a$  from  $T_{rec} \approx 0.25 \text{ eV}$
- at recombination  $\delta \rho_B / \rho_B \sim \delta T / T \sim 10^{-4}$  and would grow only by a factor  $T_{rec} / T_0 \sim 10^3$  without DM
- Subhorizon Inhomogeneities of photons  $\delta \rho_{\gamma} / \rho_{\gamma}$  oscillate with constant amplitude at RD and with decreasing amplitude at MD, thus we can measure  $T_{RD/MD} / T_{rec}$
- Phase of oscillations decoupled after recombination depends on the wave-length, recombination time and sound speed

$$\delta \rho_{\gamma} / \rho_{\gamma} \propto \cos\left(k \int_{0}^{t_{r}} \frac{v_{s} dt}{a(t)}\right) = \cos(k I_{sound})$$

$$\delta T(\theta, \varphi) = \sum a_{lm} Y_{lm}(\theta, \varphi) , \qquad \langle a_{lm}^* a_{lm} \rangle = C_l \equiv 2\pi \mathscr{D}_l / (l(l+1))$$





## Mode evolution at various stages



Dmitry Gorbunov (INR)

Cosmology, 3 November 2023

JINR, AYSS-2023 101/105

## On formulas...

• short waves,  $k\eta_{eq} \gg 1$ 

 $R_B\equiv 3
ho_B/4
ho_\gamma$ 

$$\begin{split} \delta_{\gamma} = & \Phi_{(i)} \cdot \left[ -324 \cdot (1+R_B) \, l^2 \, \frac{\Omega_{CDM}}{\Omega_M} \, (1+z_{eq}) \, \frac{\log(0.2k\eta_{eq})}{(k\eta_0)^2} \right. \\ & \left. + \frac{6}{(1+R_B)^{1/4}} \cos\left(k \, \int_0^\eta \, d\tilde{\eta} \, u_s\right) \right] \, , \end{split}$$

• long waves,  $k\eta_{rec} \ll 1$ 

$$\delta_{\gamma} = -rac{12}{5} \Phi_{(i)} = ext{const}$$

• intermediate waves ...

$$\delta_{\gamma}(\mathbf{k},\eta) = -4 \left[1 + R_{B}(\eta)\right] \Phi(\mathbf{k},\eta) + 4 \Phi_{(i)}(\mathbf{k}) \cdot A(k,\eta) \cos\left(k \int_{0}^{\eta} u_{s} d\tilde{\eta}\right),$$



## On top of that: propagation in expanding Universe



Dmitry Gorbunov (INR)

Cosmology, 3 November 2023

JINR, AYSS-2023 103 / 105



## On formulas...

From linear approximation to the geodesic equation... for scalar perturbations

$$\frac{\delta T}{T} (\mathbf{n}, \eta_0) = \frac{1}{4} \delta_{\gamma}(\eta_r) + (\Phi(\eta_r) - \Phi(\eta_0)) \\ + \int_{\eta_r}^{\eta_0} (\Phi' - \Psi') d\eta \\ + \mathbf{nv}(\eta_r) - \mathbf{nv}(\eta_0) .$$

for tensor perturbations

$$\frac{\delta T}{T}(\mathbf{n},\eta_0) = \frac{1}{2} \int_{\eta_r}^{\eta_0} d\eta \, n_i h_{ij}^{TT'} n_j \,,$$

Dark Matter

Non-thermal mechanisms



# CMB measurements (Planck) $\theta, \Omega_{DM}, \Omega_B, \tau, \Delta_{\mathscr{R}}, n_s$

