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In quantum �eld theory an important role is played by various hypergeometric
functions. Of particular interest is their close relationship with Feynman loop
integrals. The latter are used to calculate higher corrections in perturbation theory
to the measurable physical processes. Which becomes especially important now
that the accuracy of measurements is increasing. There are many ways to solve
Feynman loop integrals using hypergeometric functions. These solutions have the
common property that the indices of the hypergeometric function linearly depends
on a small parameter. And for practical calculations, it is necessary to obtain a
Laurent expansion in this small parameter. In this case, it is desirable that the
expansion elements be expressed in terms of well-de�ned functions that can be
calculated with arbitrary precision. In this work we study the expansion of various
hypergeometric functions in a Laurent series with respect to a small parameter in
terms of multiple-polylogarithms. For this purpose, we mainly use the di�erential
equation method and the Lee algorithm. Speci�cally, we will be interested in
the generalized hypergeometric functions, the Appell and Lauricella functions. In
these calculations, a particularly important role is played by the replacement of
the variable: rational in one direction and irrational in the other. This issue is
discussed with special attention.

PACS: 44.25.+f; 44.90.+c

Introduction

The problem of expansion of hypergeometric functions often arises in
quantum �eld theory when calculating scalar Feynman integrals. It is impor-
tant that the expansion be expressed in a class of well-de�ned functions. For
such functions we will use so called Goncharov multiple polylogarithms [1,2].
The later can be de�ned recursively:

G(a1, ..., an;x) =

x∫
0

G(a2, ..., an;x
′)

x′ − a1
dx′, n > 0 (1)

and the recursion starts with G(;x) = 1. We also de�ne the regularization
rule G(0, . . . , 0︸ ︷︷ ︸

n

;x) = logn x
n!

. For this purpose we will use methods originally

developed in quantum �eld theory in applications for Feynman loop integrals.
Such methods include the method of di�erential equations (DE) [3�7] and
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the Lee algorithm [8]. This possibility for generalized hypergeometric series
was mentioned in the work [9].

The paper is organized as follows. First, we describe the main hyper-
geometric functions under consideration. Next, we give a brief schematic
description of how such functions can be expanded. Finally, we come to our
conclusion.

Hypergeometric series

Here we will give a brief description of the functions under consideration
and the corresponding systems of DE. The simplest example is the general-
ized hypergeometric function de�ned as

pFq

(
a1, . . . , ap
b1, . . . , bq

∣∣∣z) =

∞∑
n=0

(a1)n, . . . , (ap)n
(b1)n, . . . , (bq)n

zn

n!
(2)

where ( )n denotes the Pochhammer symbol. For practical applications, we
will be interested in the case when p = q+1 and the indices linearly depend
on the small parameter ε. We will look for a series expansion with respect
to this ε parameter. We will be most interested in the di�erential equation
for pFq which, as well known, can be written as[
z(θ+a1)(θ+a2) . . . (θ+ap)−θ(θ+b1−1)(θ+b2−1) . . . (θ+bq−1)

]
pFq = 0 (3)

where θ = z d
dz
. This single DE can be naturally rewritten as a system of DE.

To do this, we will choose a basis as J = {f0, f1, . . . , fq} with

f0 = pFq, fn = θ(θ − 1) . . . (θ − n+ 1)f0 = zn
dnf0
dzn

. (4)

For n < q, one can easily write the di�erential relations as d
dz
fn = n

z
fn+

1
z
fn+1,

for n = q the di�erential relation can be obtained directly from the equation
(3). As a result, we get a system of DE in the form

d

dz
J =

(
A

z
+

B

z − 1

)
J (5)

whereA and B are some p×p matrices. Note that this system is immediately
in Fuchsian form due to the basis choice. The boundary conditions can be eas-

ily obtained directly from the de�nition (2) and we get J

∣∣∣∣
z→0

∼ {1, 0, . . . , 0} .

A generalization of hypergeometric functions to the case of many variables
are the Lauricella functions [10]

F
(n)
A (α;β1, . . . , βn; γ1, . . . , γn;x1, . . . , xn) =

∞∑
m1,...,mn=0

(α)m1+···+mn(β1)m1 . . . (βn)mn

(γ1)m1 . . . (γn)mnm1! . . .mn!
xm1
1 . . . xmn

n , (6)
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F
(n)
B (α1, . . . , αn;β1, . . . , βn; γ;x1, . . . , xn) =

∞∑
m1,...,mn=0

(α1)m1 . . . (αn)mn(β1)m1 . . . (βn)mn

(γ)m1+···+mnm1! . . .mn!
xm1
1 . . . xmn

n , (7)

F
(n)
D (α;β1, . . . , βn; γ;x1, . . . , xn) =

∞∑
m1,...,mn=0

(α)m1+···+mn(β1)m1 . . . (βn)mn

(γ)m1+···+mnm1! . . .mn!
xm1
1 . . . xmn

n . (8)

In a particular case n = 2, these functions are reduced to the more well-
known Appell functions F

(2)
A = F2, F

(2)
B = F3, F

(2)
D = F1. In order to obtain

a system of di�erential equations for the Lauricella functions, we write the
basis as{

θxj1
. . . θxjk

Fi

∣∣∣ 0 ≤ k ≤ n, j1 < j2 < · · · < jk

}
, i = A,B, (9)

and {
FD, θxj

FD

∣∣∣ j = 1, . . . , n
}
, (10)

with θa = ∂/∂a. As a simple example, consider the Appell function F1. The

basis will be J1 =
{
F1, x

∂
∂x
F1, y

∂
∂y
F1

}
, then the DE system will have the

form
∂

∂x
J1 =

(
A0

x
+

A1

x− 1
+

Ay

x− y

)
J1. (11)

The boundary conditions for the Lauricella functions can be obtained recur-
sively. In practical calculations we consider functions up to n = 4, with more
complex functions computational di�culties arise.

Expansion of hypergeometric series

To obtain the decomposition, we use the Lee algorithm [8] to reduce the
resulting system of DE to ε-form. It can then be easily integrated in terms of
polylogarithms, taking into account the boundary conditions, which gives the
�nal answer. Lee algorithm only works if all eigenvalues of matrix residues
are integers (ignoring the linear part in ε). If this condition is not met, then
one need to use a special variable replacement that will convert all eigenvalues
to integers. If the eigenvalues are half-integer at points z1 and z2, then one
can use the variable replacement z = (xnz2−z1)/(x

n−1), where n - the least
common denominator of eigenvalues at these points and x is the new variable.
If there are more than two "non-integer" points, then the replacement may
not exist and each such case should be considered individually. In the case
of generalized hypergeometric functions of one variable, the system has only
three singular points, so we can classify all the variable changes that we used.
De�ne n - the least common denominator for all eigenvalues. We consider
the following cases



4

� Case A: n = 1 which means all eigenvalues are integers and no variable
replacement is required.

� Case B: n > 1 and eigenvalues are non-integer at points z = 0, 1, then
we use variable change z → zn1

1+zn1
.

� Case C: n > 1 and eigenvalues are non-integer at points z = 0,∞, then
we use variable change z → zn2 .

� Case D: n > 1 and eigenvalues are non-integer at points z = 1,∞, then
we use variable change z → 1− zn3 .

� Case E: n = 2 and eigenvalues are non-integer at points z = 0, 1,∞,

then we use variable change z → − 4z24
(z24−1)2

.

� Case F: n > 2 and eigenvalues are non-integer at points z = 0, 1,∞,
then we use transformation matrix T = z−1/nI and variable change
z → zn1

1+zn1
.

If a case falls into this classi�cation, this does not mean that it can be cal-
culated in terms of G-functions. Let k be the number of non-integer upper
indices k = #{ai|i = 1, . . . , q; ai /∈ Z}, l the number of non-integer lower
indices l = #{bj|j = 1, . . . , p; bj /∈ Z}. Empirically, we have established
that the generalized hypergeometric function cannot be expanded in terms
of polylogarithms by our method if one of the following conditions is sat-
is�ed

1. n = 2 and |k − l| ≥ 2.

2. n > 2 and (k ≥ 2 or l ≥ 2) and {ai − a1, bj − a1|i = 1, . . . , q, j =
1, . . . , p} ̸⊂ Z.

3. n > 2, k = l = 1 and ai − bj /∈ Z where ai and bj are two non-integer
indices.

For Lauricella functions the situation is similar. Only in this case, the sin-
gularities will depend on additional parameters.

Conclusion

In this short note, we brie�y describe the method of expanding hyperge-
ometric functions in terms of multiple polylogarithms using the method of
di�erential equations. A classi�cation was given of possible variable changes
which can be used in these calculations. A more detailed description of the al-
gorithm as well as a description of the package that automates this algorithm
in the Wolfram Mathematica language will be given in future publications.
Even though similar packages already exist [11�13] we believe that this work
will still be useful to the community. The reason for this is that we consider
many cases here that have not been considered previously. They are mainly
associated with non-trivial changes of variable.
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