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We consider a four-dimensional quantum field theory with weakly interacting
ultraviolet fixed points up to four loop order for gauge, three loop to Yukawa
and quartic scalar beta functions. We compute them for a SU(Nc) gauge theory
coupled to Nf fundamental fermions and elementary scalars. Moreover, we found
fixed point couplings, field and mass anomalous dimensions, and scaling exponents
up to the first three non-trivial orders in a small Veneziano parameter. Further,
we investigate the size of the conformal window.
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Introduction4

Let us consider possible asymptotic behavior of the dimensionless cou-5

plings of Quantum field theory (QFT). As we know, there are two behav-6

iors. The first one called asymptotic freedom [1,2], very characteristic of the7

Quantum Chromodynamics, which means that with increasing the energy,8

the value of the some coupling is decreasing. This means that in the deep9

ultraviolet (UV) this coupling tends to leads to the Gaussian non-interactive10

fixed point.11

Asymptotic safety (AS) [3–6] is some extension of asymptotic freedom,12

where couplings in the deep UV develop a fixed point. So their value stabi-13

lizes at some scale and does not change enough, and this value is not zero.14

Therefore, the theory remains interactive.15

The idea of asymptotic safety has been first proposed by S. Weinberg16

in the later of 70s [3], as a way of making the four-dimensional theory of17

gravity non-perturbatively renormalizable. But in recent years AS has been18

quite extensively used in the framework of Yang-Mills theories as a way of19

curing pathological behaviors of the U(1) gauge couplings by making them20

reach the interactive fixed point at some scale.21

In this paper we confirm previous studies [7–9] of the Litim-Sannino model22

at 433 order for gauge, Yukawa and scalar couplings, respectively. Moreover23

we found the conformal window for finite number of colors, see the full version24

of paper [10].25

Model26
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field SU(Nc) UL(Nf ) UR(Nf )
ψL Nc Nf 1
ψR Nc 1 Nf

H 1 Nf N̄f

Table 1. Model content with corresponding representations under gauge and global
symmetry

We consider a four-dimensional, renormalizable QFT with SU(Nc) gauge27

group and an unbroken U(Nf )L×U(Nf )R global flavour symmetry. We have28

fermion and scalar fields, as listed in Tab.1 The corresponding Lagrangian29

consists of a gauge sector with field strength tensor Fµν , the coupling to30

the fermions via the covariant derivative Dµ, the gauge fixing Lgf and ghost31

terms Lgh. The scalar and gauge sector interactions is mediated via the real32

chiral Yukawa coupling y. In the scalar sector, we have single-trace (u) and33

double-trace quartic couplings (v). Traces in the Lagrangian run over both34

flavour and gauge indices.35

L = −1

4
FAµνFA

µν + Lgf + Lgh + Tr(ψ̄iD̂ψ)

+ Tr(∂µH†∂µH)− yTr[ψ̄(HPR + H†PL)ψ]

−m2Tr(H†H)− uTr((H†H)2)− v(Tr(H†H))2, (1)

In this work, we are interested in the planar (Veneziano) limit, where field36

multiplicities Nf and Nc are large and interactions are parametrically weak.37

The advantage of the Veniziano limit is that it offers perturbative control,38

allowing expansions in a small parameter.39

To prepare for the Veneziano limit, we introduce rescaled couplings, where40

explicit dependence on (Nc, Nf ) drops out and we leave only with a depen-41

dence on ϵ ≡ Nf

Nc
− 11

2
:42

αg =
g2Nc

(4π2)
, αy =

y2Nc

(4π2)
, (2)

αu =
uNf

(4π2)
, αv =

vN2
f

(4π2)
. (3)

Moreover, the parameter ϵ becomes continuous in this limit, taking values43

in the entire range ϵ ∈ [−11
2
,∞). We are particularly interested in the regime44

|ϵ| ≪ 1, where we can control perturbativity. The advantage of ϵ is that it45

is proportional to the one-loop coefficient of the gauge βg = α2
g

(
4
3
ϵ+O(αg)

)
46

beta function, which underlies perturbatively controlled fixed points in any47

4D QFT.48

A key feature of non-abelian gauge theories coupled to matter is that fixed49

point couplings α∗
i can be expanded as a power series in the small parameter50
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ϵ. In our case, this means the “conformal expansion” of ϵ. The expansion51

coefficients α(n)
i are determined using perturbation theory, by performing a52

perturbative loop expansion up to order n+ 1 in the gauge and up to order53

n in the Yukawa and quartic β-functions:54

α∗
x = aLOϵ+ aNLOϵ

2 + aNNLOϵ
3 +O(ϵ4). (4)

It should be noted that generic β-functions for the gauge and Yukawa55

couplings have been calculated using RGBeta [11], while the quartic couplings56

have been determined using our own tools.57

The main reason why we consider (n+1, n, n) loop order is that the one-58

loop gauge coefficient is of the same order of magnitude as the two-loop gauge59

coefficient. Therefore we have some correlation between the perturbative60

and conformal expansions. In the 100 order, the gauge coupling running is61

slowed down and a fixed point cannot (yet) arise. In the 211 order a fixed62

point materialises [12], and in order 322, arises bounds on the conformal63

window [7,8]. In this work, we consider the third order of ϵ corresponding to64

the 433 approximation [9, 10].65

Discussion66

Let us investigate the size of the UV conformal window for asymptotically67

safe theories with action (1) using perturbation theory. The main interest of68

our work is the ϵmax values where the UV fixed point may persist. We can69

find the UV conformal window directly from β-functions, in this case ϵ value70

will be called ϵstrict, since we take into account only ϵ to the power of n in71

the β-functions. The reason for this strict approach is that the higher order72

coefficients in power expansion (4) are not (yet) accurately determined due73

to the absence of higher loop terms in β-functions. This scheme is dictated74

firstly, by the fixed point and eigenvalues:75

• as constraints for couplings 0 < |α∗| ≲ 1 [13];76

• as requirement for vacuum stability α∗
u > 0 and α∗

u + α∗
v > 0 [14];77

• as fixed point merger (θ = 0), which means the collision of the UV fixed78

point with an infrared (IR) fixed point. We can linearize the RG flow79

in the region of its UV fixed point βi =
∑

j Mij(αj − α∗
j ) + subl. and80

find the eigenvalues of M stability matrix (Mxx′ = ∂βx

∂αx′
|α=α∗) which81

characterize the scaling of couplings in the vicinity of the fixed point.82

If eigenvalue > 0 then eigendirection called relevant, if < 0 irrelevant.83

In the 433 order we have 1 relevant and 3 irrelevant directions.84

The second strategy employs the loop level approximation, where we85

retain subleading terms in ϵ and we refer its bounds as ϵsubl (and place the86

corresponding contributions in the boxes). There we also take into account87

all the above menthioned constraints from couplings, vacuum stability and88

critical exponents.89
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α∗
g α∗

u + α∗
v θ1

ϵmax
strict (0.117− 0.457) (0.087− 0.146) (0.091− 0.249)
ϵmax
subl (0.117− 0.363) (0.087− 0.116) (0.091− 0.234)

Table 2. Constraints on the UV conformal window for different approximation
schemes. Here the first value arises from the Padé approximation, since it gives
tighter estimates.

Results90

Using the expansion (4), and solving βi(α∗
j ) = 0, we find the numerical91

expansion for fixed points92

α∗
g = 0.456ϵ+ 0.781ϵ2 + 6.610ϵ3 + 24.137ϵ4 ,

α∗
y = 0.211ϵ+ 0.508ϵ2 + 3.322ϵ3 + 15.212 ϵ4 ,

α∗
u = 0.200ϵ+ 0.440ϵ2 + 2.693ϵ3 + 12.119 ϵ4 ,

α∗
v = −0.137ϵ− 0.632ϵ2 − 4.313ϵ3 − 24.147 ϵ4 . (5)

The corresponding scaling exponents have the following form93

θ1 = −0.608ϵ2 + 0.707ϵ3 + 6.947ϵ4 + 4.825 ϵ5 ,

θ2 = 2.737ϵ+ 6.676ϵ2 + 22.120ϵ3 + 102.55 ϵ4 ,

θ3 = 2.941ϵ+ 1.041ϵ2 + 5.137ϵ3 − 62.340 ϵ4 ,

θ4 = 4.039ϵ+ 9.107ϵ2 + 38.646ϵ3 + 87.016 ϵ4 . (6)

Making the dimensional analysis with couplings [13], we note that the94

tightest bound on ϵ arises from the gauge coupling (5). In the same manner95

we can find the constraints on ϵ using the vacuum stability condition [14].96

At the end, taking into account the expressions for scaling exponents (6),97

we notice that the series expansion for θ2,3,4 are monotonous, with same-sign98

corrections at every order. However the LO sign for relevant scaling exponent99

θ1 has opposite value compared other loop terms, which is the indication of100

FP merger. Thus, we can extract the constraints from the relevant scaling101

exponent.102

We summarize our results on the UV conformal window in Tab.2.103

Therefore, we 1. confirmed the results [9]; 2. estimated conformal window104

in the Veneziano limit and set the upper bound for ϵmax ≈ (0.09± 0.01).105
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