

MOMENTUM IN GeV/c

Черенковское излучение

 Возникает при движении заряженой частицы со скоростью больше скорости света в среде $\beta > 1/n$

•
$$\cos \theta = \frac{1}{n\beta}$$
 $N = N_{max}(1 - \frac{1}{n^2\beta^2})$

- $N = kL \int \sin^2 \theta_c(E) dE$, $k = \alpha z^2 / r_e m_e c^2 = 370 \ eV^{-1} cm^{-1}$
- $N_{pe} \approx L N_0 \langle sin^2 \theta_c \rangle$, $N_0 = k \int \epsilon dE$, $N_0 \approx 30 180 \ cm^{-1}$

Черенковские и сцинтилляционные радиаторы

• Сцинтилляторы

- Большой световыход
 - 20тыс фотонов на 1 см пластика, ~свыше 300 тыс/см для Nal
- Очень большая вариативность свойств

• Черенковские

- Малый световыход
 - Типично на 2-3 порядка меньше чем для сцинтилляторов. Кварц, λ>300nm : 1500/см
- Очень быстрые
- Направленность излучения
- Прозрачность для собственного излучения
- Очень высокая радиационная стойкость
- Цена, возможность создавать очень большие детекторы,

Черенковское излучение

- Регистрация черенковского излучения основной метод регистрации частиц в экспериментах где активным объемом детектора является естественная среда
- В универсальных ускорительных экспериментах используется в калориметрах, для идентификации частиц, в детекторах предназначенных для точного измерения времени

Когерентное черенковское радиоизлучение

- Предсказано Гургеном Аскарьяном в 1962г, открыто в 2000.
 Известно как эффект или излучение Аскарьяна
- Проявляется как радио- и микроволновое излучение при движении фронта заряженных частиц с ненулевым общим зарядом в плотной диэлектрической среде.
- Такие условия возникают во фронте ливня от нейтрино сверхвысоких энергий ввиду того что комптоновское рассеяние рождает только электроны

Когерентное черенковское радиоизлучение (a) ANITA-IV Payload

- Эксперимент ANITA : поиск радиоизлучения от ливней, возникающих при взаимодействии нейтрино с энергией 10¹⁸+ eV в ледяном щите Антарктиды
- Массив антенн, поднимаемый на высоту ~35 км с помощью воздушноготшара

Переходное излучение

 Возникает при пересечении ультрарелятивистской заряженной частицей границы сред с разной плазменной частотой ω_p

- Направлено в узком конусе вперед по движению частицы, θ ≈ 1/γ,
 Крайне низкая интенсивность I~γ, большая часть энергии излучается в мягком рентгеновском диапазоне, 2-40 KeV.
- Используется только для идентификации электронов (γ > 2000) в сложных условиях. Как правило, эффективность идентификации низкая.

Многократное рассеяние

- Заряженная частица проходя через вещество испытывает множественные упругие взаимодействия с ядрами, что вызывает изменение направления движения без значимых потерь энергии
- Так как итоговое отклонение результат множества случайных малых отклонений, итоговое распределение близко к нормальному

Многократное рассеяние

$$F(\theta_{pl}) = \frac{1}{\sqrt{2\pi}\theta_0} exp\left(-\frac{\theta_{pl}^2}{2\theta_0^2}\right)$$

 $\theta_1 \approx \frac{\Delta p}{p} \sim \frac{Zz}{p} \frac{1}{b}$

Для одного взаимодействия

$$\theta_0 \sim \sqrt{N} \langle \theta_1 \rangle \sim \sqrt{N} \frac{Zz}{p} , \quad X_0 \sim nZ^2 \implies \theta_0 \sim \frac{1}{p} \times \sqrt{\frac{x}{X_0}}$$

$$\theta_0 = \frac{13.6 \text{ MeV}}{\beta c p} \ z \ \sqrt{\frac{x}{X_0}} \left[1 + 0.038 \ln(\frac{x \ z^2}{X_0 \beta^2}) \right]$$

1 TeV мюон, 1 км воды => отклонение $heta_0pprox 0.001$

Многократное рассеяние

$$\frac{\sigma(p)}{p} = \frac{\sigma(s)}{s} \sim \frac{\sigma(y)p}{BL^2} \qquad \qquad \sigma(y)_{eff} = \sigma(y)_{int} \oplus \sigma(y)_{mult}$$

$$\sigma(y)_{mult} \sim \frac{L}{p} \sqrt{\frac{x}{X_0}} \qquad \frac{\sigma(p)}{p} = Ap \oplus B$$

Многократное рассеяние ограничивает разрешения на низких импульсах

 $J = J_0 e^{-\mu \rho x}$

Для нескольких разных процессов *i*

 $\boldsymbol{\mu} = \sum \boldsymbol{\mu}_i$

Для смесей $\mu = \sum w_k \mu_k$

Для взаимодействия фотонов с веществом наибольшее значение имеют

- Фотоэффект
- Комптоновское рассеяние
- Рождение электронпозитронных пар

 $I = I_0 e^{-\mu \rho x} \quad \mu = n \sigma / \rho \qquad \sigma = \Sigma \sigma_k$

Взаимодействие фотонов с веществом: Фотоэффект

$A + \gamma \rightarrow A^{+*} + e^- \rightarrow A^+ + e^- + X$

- Поглощение фотона свободным электроном невозможно, необходим еще один взаимодействующий объект для сохранения энергииимпульса (ядро)
- Вероятность поглощения пропорциональна силе взаимодействия электрона и ядра, в 80% поглощение происходит на наиболее глубокой оболочке (К-оболочке, если позволяет энергия фотона)
- Поэтому сечение фотоэффекта σ_ф имеет пилообразную форму (скачек в 5-10 раз при достижении энергии связи L,К... оболочек

Взаимодействие фотонов с веществом: Фотоэффект

Для энергии фотонов выше К-линии

• для
$$\varepsilon = E_{\gamma}/m_e \ll 1$$

 $\sigma_{\phi} = \sqrt{32} \alpha^4 \sigma_{\rm T} \frac{Z^5}{\varepsilon^{3.5}},$

• для
$$\varepsilon = E_{\gamma}/m_e \gg 1$$

 $\sigma_{\phi} = 4\pi r e \alpha^4 \frac{Z^5}{\epsilon},$

Взаимодействие фотонов с веществом: Фотоэффект

- В экспериментальной физике с фотоэффектом часто сталкиваются при калибровках детекторов
- Варианты энерговыделения:
 - Е=Еү (полное поглощение)
 - E=E-E_K ("escape peak) характеристический фотон покидает детектор
 - E=E_к (зарегисирирован только характеристический фотон)

Рентгенофлуоресцентный анализ неразрушающий метод определения Химического состава вещества по спектру характеристических фотонов

Спектр сигналов с газового детектора при облучении источником Fe⁵⁵

Комптоновское рассеяние

- рассеяние фотона на (квази)свободном электроне
 - Последняя стадия развития ЕМ ливня
 - Высокоточное измерение энергии пучка e^+e^- коллайдеров

 $J = J_0 e^{-\mu\rho x}$

Для разных процессов I

 $\mu = \sum \mu_i$

Для смесей

$$\mu = \sum w_k \mu_k$$

Взаимодействие фотонов с веществом. Рождение электрон-позитронных пар

• Диаграмма процесса – развернутая диаграмма тормозного излучения.

Для E>>m_e

$$W_{Br}(E_e, E_{\gamma}) = 1/(X_0 E_{\gamma})$$

$$\left. \frac{\partial E}{\partial x} \right|_{Brem} = -\frac{1}{X_0} E$$

$$\mathbf{E} = E_0 e^{-x/X_0}$$

A

$$W_{pair}(E_{\gamma}, E_e) = 7/(9X_0E_{\gamma})$$

$$\partial J/\partial x = -\frac{7}{9X_0}J$$

 $J = J_0 e^{-7x/9X_0}$

Доминирующим процессом взаимодействия фотонов высокой энергии с веществом является рождение электрон-позитронной пары

Вероятность поглощения фотона через рождение е⁺е⁻ пары

Взаимодействие фотонов с веществом. Рождение электрон-позитронных пар

- Вплоть до очень высоких энергий распределение по параметру
- $\kappa = E_e/E_\gamma$ (отношение энергий электрона и фотона) равномерное
- Если образовавшиеся электрон и позитрон имеют достаточную энергию, они при движении через вещество с большой вероятностью испускают энергичные тормозные фотоны

Тормозное излучение + рождение электрон-позитронных пар = ЕМ каскад

Развитие электромагнитного ливня

Развитие электромагнитного определяется характеристиками среды X_0 , R_m и безразмерными величинами $t = x/X_0$, и $y = \ln(E/E_c)$

Поперечное развитие ЕМ ливня

Поперечное развитие ливня характеризуется радиусом Мольера R_m

$$R_{M} = \frac{21MeV \times X_{0}}{E_{c}} \approx \frac{7A}{Z}g \times cm^{-2}$$

Gives the average lateral deflection of electrons of critical energy after 1X₀

- 90% of shower energy contained in a cylinder of $1R_m$
- 95% of shower energy contained in a cylinder of 2R_m
- 99% of shower energy contained in a cylinder of 3.5R_m

Флуктуации видимой энергии ЕМ ливня

- На флуктуации видимой энергии ливня влияют
 - Эффективный порог регистрации электронов
 - сегментация и доля активного вещества для гетерогенных детекторов
- Например: в гомогенном детекторе регистрирующем черенковский свет флуктуации будут определяться количеством электронов с энергией ниже 0.7 MeV. Типичная точность – 10%
- В сцинтилляторе порог регистрации практически нулевой, и флуктуации очень малы, достижимая точность измерения энергии ~2%
- В гетерогенных детекторах флуктуирует доля электронов не вышедших в активное вещество.

Взаимодействие электронов и фотонов с веществом при очень высоких энергиях

- При очень высоких энергиях подавляется излучение мягких фотонов для ТИ, и рождение e⁺e⁻ пар с близкими импульсами В результате длина лавины существенно возрастает.
- При Е≈10²⁰ eV электроны и фотоны взаимодействуют в основном через фотоядерные и электроядерные реакции

$$E_{LPM} = (m_e c^2)^2 \alpha \frac{X_0}{4\pi\hbar c\rho} = (7.7 \text{ TeV/cm}) \times \frac{X_0}{\rho}$$

Взаимодействие фотонов с веществом при очень высоких энергиях

Interaction length for a photon in ice as a function of photon energy for the Bethe-Heitler (BH), LPM (Mig) and photonuclear (γA) cross sections [56].

Сильное взаимодействие адронов

Полное сечение адрона на нуклоне стремится к постоянной величине

$$\sigma_{\text{полн}} = \sigma_{\text{упр}} + \sigma_{\text{неупр}}$$
 $\lambda_{\text{адр}} = \frac{A}{N_A \rho \sigma_{\text{неупр}}} \quad \lambda_{\text{яд}} = \frac{A}{N_A \rho \sigma_{\text{полн}}}$

Для большинства веществ длина ядерных взаимодействий намного больше радиационной длины

Сильное взаимодействие адронов

	-							
Material	Z	A	$\langle Z/A \rangle$	Nucl.coll.	Nucl.inter.	Rad.len.	$dE/dx _{\rm min}$	n Density
				length λ_T	length λ_I	X_0	$\{ MeV \}$	$\{g \ cm^{-3}\}$
				$\{\mathrm{g\ cm^{-2}}\}$	$\{\mathrm{g\ cm^{-2}}\}$	$\{g \text{ cm}^{-2}\}$	$g^{-1}cm^2$	$(\{g\ell^{-1}\})$
H_2	1	1.008(7)	0.99212	42.8	52.0	63.04	(4.103)	0.071(0.084)
D_2	1	2.01410177803(8)	0.49650	51.3	71.8	125.97	(2.053)	0.169(0.168)
He	2	4.002602(2)	0.49967	51.8	71.0	94.32	(1.937)	0.125(0.166)
Li	3	6.94(2)	0.43221	52.2	71.3	82.78	1.639	0.534
Be	4	9.0121831(5)	0.44384	55.3	77.8	65.19	1.595	1.848
C diamond	6	12.0107(8)	0.49955	59.2	85.8	42.70	1.725	3.520
C graphite	6	12.0107(8)	0.49955	59.2	85.8	42.70	1.742	2.210
N_2	7	14.007(2)	0.49976	61.1	89.7	37.99	(1.825)	0.807(1.165)
O_2	8	15.999(3)	0.50002	61.3	90.2	34.24	(1.801)	1.141(1.332)
F_2	9	18.998403163(6)	0.47372	65.0	97.4	32.93	(1.676)	1.507(1.580)
Ne	10	20.1797(6)	0.49555	65.7	99.0	28.93	(1.724)	1.204(0.839)
Al	13	26.9815385(7)	0.48181	69.7	107.2	24.01	1.615	2.699
Si	14	28.0855(3)	0.49848	70.2	108.4	21.82	1.664	2.329
Cl_2	17	35.453(2)	0.47951	73.8	115.7	19.28	(1.630)	1.574(2.980)
Ar	18	39.948(1)	0.45059	75.7	119.7	19.55	(1.519)	1.396(1.662)
Ti	22	47.867(1)	0.45961	78.8	126.2	16.16	1.477	4.540
${\rm Fe}$	26	55.845(2)	0.46557	81.7	132.1	13.84	1.451	7.874
Cu	29	63.546(3)	0.45636	84.2	137.3	12.86	1.403	8.960
Ge	32	72.630(1)	0.44053	86.9	143.0	12.25	1.370	5.323
Sn	50	118.710(7)	0.42119	98.2	166.7	8.82	1.263	7.310
Xe	54	131.293(6)	0.41129	100.8	172.1	8.48	(1.255)	2.953(5.483)
W	74	183.84(1)	0.40252	110.4	191.9	6.76	1.145	19.300
\mathbf{Pt}	78	195.084(9)	0.39983	112.2	195.7	6.54	1.128	21.450
Au	79	196.966569(5)	0.40108	112.5	196.3	6.46	1.134	19.320
Pb	82	207.2(1)	0.39575	114.1	199.6	6.37	1.122	11.350
U	92	[238.02891(3)]	0.38651	118.6	209.0	6.00	1.081	18.950

Адронный ливень

- Характерная масштабная величина ливня длина ядерного взаимодействия λ
- λ>>X₀, поэтому адронный ливень имеет гораздо большие размеры
- Флуктуации адронного ливня очень велики ввиду высокого порога ядерных реакций $\sim 2M_\pi \approx 280 {
 m M}$ эВ и наличия разных механизмов взаимодействия адронов с веществом детектора

Адронный ливень

- Вторичные *π*₀ и η-мезоны распадаясь на фотоны вызывают развитие электромагнитной компоненты ливня
- Доля электромагнитной компоненты сильно флуктуирует
- Средняя доля энергии приходящаяся на ЭМ компоненту медленно (логарифмически) растет с энергией, с ~30% при 10ГэВ до более чем 50% при энергиях LHC (100+ ГэВ)

На что затрачивается энергия адронного ливня?

	Lead	Iron
Ionization by pions	19%	21%
Ionization by protons	37%	53%
Total ionization	56%	74%
Nuclear binding energy loss	32%	16%
Target recoil	2%	5%
Total invisible energy	34%	21%
Kinetic energy evaporation neutrons	10%	5%
Number of charged pions	0.77	1.4
Number of protons	3.5	8
Number of cascade neutrons	5.4	5
Number of evaporation neutrons	31.5	5
Total number of neutrons	36.9	10
Neutrons/protons	10.5/1	1.3/1

Флуктуации доли электромагнитной компоненты и «невидимых» потерь приводят к большим ошибкам при измерении энергии ливня более чем на порядок хуже чем в случае ЕМ ливня

Зарядовая асиметрия во взаимодействиях пионов

- Мягкие π^+ и π^- по разному взаимодействуют в веществе.
 - *π*⁻ захватываеся атомом, быстро опускается до нижних уровней и захватывается ядром без дополнительного энерговыделения.
 - π^+ останавливается и распадается в покое.

 $\pi^+
ightarrow \mu^+
u_\mu
ightarrow e^+
u_\mu \overline{
u_\mu}
u_e$

- Этот механизм используется в beam-dump экспериментах как источник $v_e(\overline{v_e}$ при этом не образуется).
- В ЕМ калориметрах мягкие (первые сотни MeV) π⁺ имеют существенно большее энерговыделение чем π⁻, что сильно затрудняет идентификацию электронов по E/P критерию

Идентификаци частиц

- На сегодняшний день известно 8 долгоживущих частиц.
- Считаем, что других долгоживущих частиц нет
- Идентифицировать значит по характеру взаимодействия с веществом или (и) за счет измерения массы отнести частицу к одному из упомянутых 8 типов

γ	M=0, Q=0				
\mathbf{e}^{\pm}	0.511 Me\	EM			
μ^{\pm}	105 MeV,	~200 <i>m</i> _e			
π^{\pm}	139 MeV	~280m _e	514		
Κ±	493 MeV	$\sim 1000 m_e$	EIVI		
p [±]	938 MeV	~2000 <i>m</i> _e			
K ⁰ L	497 MeV		Strong		
n	939 MeV		JUDIR		

Заряд, масса, характер взаимодействия — Ключ к идентификации

BACKUP SLIDES

NOvA Event Topologies

A. Radovic, JETP January 2018

