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Demonstration of nonlocal Josephson effect in Andreev molecules
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The Nobel Prize in Physics 1973
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Tunneling between a normal metal and
another normal metal or a superconductor

140 Phavsics 1973

1l Mywrew JOTA
FERMI
EHERG‘I\ ™
GLASS CURRENT OUT \ l_/ﬂ VAPPLIED
SLIDE = .
W
(A) CURRENT IN  (B) ™ f“ T
”ﬁ% ——— LT ENERGY aP
Al -Al T—— = 1 _
[ET (B)
@ CURRENT
WS
@ S-I-N
SUPERGONDUGTING

() . Are — VOLTAGE

Fig, &,



Tunneling between two superconductors
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Tunneling Summary: We are only concerned with
the Josephson Tunneling in a Basic Junction
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Macroscopic Quantum Model

1. The wavefunction describes the whole ensemble of
superelectrons such that

WV (r, )W (r,t) = n"(r,t) —> density
and / dr W*(r,t)W(r,t) = N~ — Total number

2. The flow of probability becomes the flow of particles, with
the physical current density given by

Js=q Re{w (iv_ —A) }
im* m*

3. This macroscopic quantum wavefunction follows

p 2
Ao = (07 - A D)) W + et )
ot 2m* \ 1



Wave function

Writing W(r,t) = \/n*(r, t) eig(rﬁ , we find

The real part of the S-Eqn gives

. 2 % +* 2
—ﬁ%ﬁ(r,t) = E’Jj (Vﬁ(r,t) - %A(r,t))
R2 2
- (V2n3(r,0))" + q*o(r,1)

8m*nk(r,t)

The imaginary part of the S-Eqgn gives the supercurrent equation:

Js = ¢"n*(r,t) (%Vﬂ(r,t) — q—iA(r}t))

T (2L



Supercurrent Equation with n* constant

Let ’ﬂ*(r, t) — n* be a constant, so that \U(I‘, t) — n* eif)(r,t)
we find
00 1 X
—N— = AJSQ —|— q*Qb with A= —-
ot 2n* (@)
and ~— — _/

Energy of a superelectron

Ns = — (A(r,t) — ;Vﬂ(r,t))



London’s Equations

1. Take the curl of the supercurrent equation

AJs = — (A(r,t) _ q—ﬁw(r,t))

gives the Second London Equation: V X (AJS) = -VxA=-B

2. Take the time derivative of the supercurrent equation:

0 JA h o0
2 (nag= - [2A T (2)
ot ot  g* ot
00 1
with By o s+ q ¢ gives
s, 1 1 Something more than
g (AJS) =E - ﬂr*q*v (5 AJSE) First London Equation?



In the superconducting electrodes:

The Supercurrent Equations govern the electrodes,
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- Js(r, t =——(A r,t — V4 r,t)
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Y= (M5 4 ety
_ Superconductor St } ﬁ, 2’;‘1.* q !
® |
Insulator 2a k . .
N\ i Even in the absence of E&M fields, a gradient of
W\ |Superconductor the phase can cause a current and the time change
of that phase can cause a voltage. For example, for
\N\L f that ph ltag ple, f
e ol a constant current J , at the boundaries we find
d, 0 1 (A3 Eo
) = — = —0(+a,t) = —— = -
Js(+a,t) S Vi(+a,t) =Jo & P (xa,t) ~ (zn* =

So that the wavefunction in the electrode is S (I'a t) = (r)e_i(é’ﬁt/ﬁ)



In the insulator

Insulator

_f CJD x \\Supm:nru:lumnr

2m*

The current must be continuous, so it must flux
through the insulating barrier; a process which is
not allowed classically. But quantum mechanically
the superelectrons can tunnel through the
insulating barrier as a supecurrent with zero
voltage. This is the Josephson current.

Because the supercurrent equation does not hold
in the insulating region, the full macroscopic wave
equation must be used to find Y in the insulating
region, with the boundary conditions given by the
wavefunction at the electrodes.

_ 0 1 (h ) 2 .
i W) = (—v _q A{r,t)) W(r, 1) 4 g6 (x, ) W(r, ) +V (2)W(r, 1)
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Tunneling Potential Barrier



Tunneling through the Barrier

Vix) .
l The energy of the superelectron is less than the
V) barrier height, so that no classical particles flow.
} T2 _
| 5 2 N 2-1 VAW (r) = (- Vo) W(r)  for |z| <a
- Tri . '
B o ! constant
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=4/t e™ I Wo=a)nr 2
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Tunneling through the Barrier

Vix)
L 2q* Ii *T
Jo = Re{w*—f’vw} = L2 Im{C1*Co}
vV m* i m*¢
At the boundaries.
! 1€ 2
. W(—a) =\/n] ef1 & W (+a) = \/n5 e'02
vl So that
| [F eith + [k eifl2 fox Liflp / ‘n* it
[::rl 1|ll|."n-1 [ E;TI-QF &C:Q _ ,anﬁ Il\-'nl
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¥=yfmet ¥y =y npe® Therefore,
; Js = Jcsin (61 — 62)
- 1] +a
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Josephson Current-

Phase relation

Js = Jcsin (61 — 05)

|
\ ‘ In the presence of and electromagnetic field, the
Josephson current-phase relation generalizes to
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a@ B \“"""“’:“““'“ Js(r,t) — JC(yazat) Sin(p(yaznt)
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\ : ' where the gauge-invariant phase is defined as
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Josephson Voltage-Phase relation

The gauge-invariant phase is
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Summary: Basic Josephson Junction (I<I,)

lP s II," {5"
Superconductor il & ) Insulator
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*® Josephson relations: * Behaves as a nonlinear inductor:
[=1 smg : [: V=1, d_f
y_Podo dt’
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Andreev reflection



Andreev Bound States
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Figure 1: Devices under study and measurement setup. (a) False-colored scanning electron
micrograph of a sample identical to Device 1, together with a measurement schematics. The
substrate is shown in gray, the exposed III-V semiconductor in pink, the epitaxial Al in
blue, gates in yellow and flux lines in purple. (b) Zoom-in of (a) around the Josephson
junctions (JJs). The distance between the junctions is L = 150 nm. (c) Similar to (b),
but for Device 3, which has L = 4 ym. (d) Schematic cross-section (not to scale) of the JJs
sharing a common electrode of length L. Andreev bound states originating from the two JJs,
spatially extended over distances in excess of L, overlap, and hybridize forming an Andreev
molecule.
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Figure 4: Anomalous supercurrent and anomalous phase shift. (a) Switching current Igw
in Device 1 as a function of ¢, measured for 2 = 0.87 at three values of V5. Quantities
A6 and Ay are defined. More details on data analysis required to produce this plot are
presented in the Supplementary Information. (b) Anomalous supercurrent Af; as a function
of 2 for three values of V5 [see legend in (a)]. (¢) Anomalous phase shift Ay as a function
of 2 for three values of V5 [see legend in (a)]. (d-f) As (a-c), but for Device 2.
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