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Objectives  
 Beam acceleration and bunching are based on the dependence of 

particle revolution frequency on its energy  
 Longitudinal OSC and CEC use dependence of particle longitudinal 

displacement on particle momentum  
while transverse OSC and CEC use dependence of particle longitudinal 
displacement on particle betatron motion 

 In this lecture we consider  
 basics of linear optics for longitudinal degree of freedom  
 longitudinal motion in a harmonic RF 
 the perturbation theory for symplectic motion 
 and limitations on beam focusing in the design of interaction 

region   



Lectures 3&4, “Longitudinal Motion and IR Focusing Limitations”, V. Lebedev    Page | 3 

 
 

S-X Coupled Motion and 
Beam Acceleration in 

Harmonic RF 
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Transfer Matrix for X-S Coupled Motion 
 Parameterization of transfer matrix in the absence of RF  
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Longitudinal displacements are counted relative to the reference particle 

 Elements M16 and M26 are directly related to dispersion 
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 Elements M51 and M52 are bound to others by symplecticity condition  
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where we accounted that 11 22 12 21 1M M M M    
 i.e. for a ring without RF M16, M26, M51 and M52 can be expressed through 

dispersion and its derivative. M56 is independent on other elements   
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Equations of Longitudinal Motion (no acceleration) 
 Orbit lengthening  
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 Momentum compaction: 
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 Equations for the longitudinal motion  
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Effect of Deceleration due to SR on Longit. Motion 

 Motion equation:  
2

2
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 Introduce Hamiltonian and potential energy 
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 Separatrix boundaries  
2 0 2 0sin sin         

 For small  the transcendent equation for 
finding the second boundary,1, can space be 
using perturbation theory, numerical solution is required for large 0   

 Accounting of acceleration one needs to account vortex electric field due to 
changing magnetic field!!! -> conservation of the phase  
For details see “Theory of Cyclic Accelerators” by Lebedev, Kolomensky 
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Particle Migration due to Scattering out & in RF Bucket 
 In the above consideration we neglected damping due to SR 
 In its absence a particle which was knocked out of the RF bucket will never 

drift back 
 Particles which have energy above 

the bucket separatrix will be 
decelerated, and then they will 
penetrate to lower energy through 
the gap between two RF buckets and 
will continue deceleration to the 
momentum acceptance 

 Probability of a particle to be 
accepted back to the RF bucket 
(due to scattering) is inversely proportional to the ratio of damping time to 
the synchrotron period.  

 For a proton collider it is very big number. 
 Consequently, the probability to jump to another bucket after Touschek 

scattering is strongly suppressed  
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RF Bucket Acceptance in the absence of Acceleration 
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 RF bucket acceptance: 

 Returning to the dimensional variables, for one RF bucket we obtain  
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 since all energies we account per one nucleon!!! 

Units for the longitudinal emittance are “eV s/a”  
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Effect of Accelerating Phase on RF Bucket Acceptance  
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 The integral cannot be expressed in 
elementary functions. For practical 
applications it can be approximated as 
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This fitting has ±4% accuracy for 0<55 
deg. 
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Perturbation Theory for 
Symplectic Motion 
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Perturbation Theory  
 The symplecticity enables to build an effective perturbation theory 

for the case of coupled motion.  
 For the perturbed   

motion one can write: 
 M – symplectic  
 transfer matrix,  I ΔM M ,  is not required to be symplectic  

 Express the eigenvectors of perturbed motion as a sum of the 
unperturbed ones 

 
 without limitation of generality one can consider that 0ii    for every i.  
 Substituting and using properties of eigen-vectors one obtains 
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Perturbation Theory (2)  
 introducing matrix * *

1 1 2 2p    V v v v v   we rewrite it as 2 matrix eq. 
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 Matrix Vp is built from symplectic vectors and its inverse is:  
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Perturbation Theory (3)  
 Account relationship between eigenvalue corrections and tune shifts 

 / (4 ) /n n nQ i       
 That finally yields 
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Linear Tune Shifts in Strongly Coupled Lattice 
 Let us find tune shifts in strongly coupled lattice for a general case 

local focusing perturbation.  
 Corresponding addition to Hamiltonian: 
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 Substitution M to the tune shift equation and using the eigen-vector 
parameterization yields:  
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Limitations on the Focusing 
of Interaction Region Quads  
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Collider Type Optics  

 High luminosity –> small beta in IP 
2

*
*

( )
s

s 


   
 Detector requires long drift => very large -function in IR quads 

 
 Therefore, the IR quads introduce major limitation on ring focusing  
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Changes of Tune and -function at Perturbation Location 
 Consider a lattice with one local perturbation =>  

 2 2
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 For  > 0 the stability is 
not lost above the half-
integer resonance  

It is used in KEKB 
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Changes of Tune and -function in Linear Approximation  
 In linear approximation  

1

2
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0

1
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 Let’s find the -function 
perturbation for the rest of 
the ring   
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Tune and -function Chromaticities 

 Change in momentum changes focusing 
1 eGL

F pc
    => 

p

p

 
 

  

 Chromaticity for point-like single perturbation  
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 Summing for all perturbation sources we have:  
 Estimate for Tevatron collider 
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Contribution of 2 IPs exceeds the ring natural chromaticity of ~20 
 What can be more important is the chromaticity of -functions  
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 The chromaticity of -functions is closely related to the 2nd order 
chromaticity. Affects beam-beam. Has to be suppressed. 
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   
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Correction Tune and -function Chromaticities 

 Sextupoles are used for the correction:  2
0 0

1

2 SB Sx G x Sx    
1

4 4 k
k

eSL p
D

pc p

 
 

  
     

 
    

                 
4 k k k

k

e
D SL

pc
 


    

 Location of F and D sextupoles near F and D quads enables 
chromaticity correction for both planes  

 For correction of chromatic -function 
sextupoles located at “right” phases are 
used  
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Correction Tune and -function Chromaticities at 
Tevatron 
 

    
Horizontal chromatic beta-function at the injection 
energy. Blue line is for the original sextupole 
configuration, red - for the proposed correction 

 

Dependence of the vertical betatron tune 
on particle momentum in the collider 

mode. 
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How OptiMX Computes Betatron Tune Shifts 
 All nonlinearities are described by zero length multipoles 
 The closed orbit can be excited by dipole correctors  
 In Reference Orbit mode program finds new CO by iterations with 

accounting all non-linearities. Then it builds new lattice where 
feeddown from high order multipoles are accounted.  
 Consequently, in linear optics calculations all corrections to optics 

are correctly accounted.  
 In View4D|Chromaticity this procedure is produced automatically on 

a number of momentum offsets. That yields dependence of mode 
tunes on momentum 
 Linear and non-linear chromaticities  
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Problems 
1. Using symplecticity condition prove that for the 4x4 matrix written through 2x2 

matrices as P p

q Q

 
 
 

 the following is correct: det( ) det( ) det( ) det( ) 1P p Q q     and 

det( ) det( ), det( ) det( )P Q p q   
2. Using software for analytical computations prove that for a ring without RF  

 16 11 12 51 21 11

26 21 22 52 22 12

(1 ) 1

(1 ) (1 )

M D M D M M DM D M

M M D D M M D M D M

       
            

3. Prove that for matrix built from symplectic normalized eigen-vectors, 
* *

1 1 2 2p    V v v v v , the following is correct:  

1 1

2
T

p pi
  V UV U  

4. Find dependence of synchrotron frequency on the particle amplitude/action for the 
beam motion in a harmonic RF voltage. Obtain asymptotic dependence for small 
amplitudes.   

5. Restore missed calculations in computation of tune shifts in strongly coupled optics  

  
 

1 1 1 1 1 1

2 2 2 2 2 2

1
2 cos ,

4
1

2 cos .
4

x x s x y y y

x x s x y y y

Q

Q

    


    


     

     


