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Objectives  
 Beam acceleration and bunching are based on the dependence of 

particle revolution frequency on its energy  
 Longitudinal OSC and CEC use dependence of particle longitudinal 

displacement on particle momentum  
while transverse OSC and CEC use dependence of particle longitudinal 
displacement on particle betatron motion 

 In this lecture we consider  
 basics of linear optics for longitudinal degree of freedom  
 longitudinal motion in a harmonic RF 
 the perturbation theory for symplectic motion 
 and limitations on beam focusing in the design of interaction 

region   
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S-X Coupled Motion and 
Beam Acceleration in 

Harmonic RF 
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Transfer Matrix for X-S Coupled Motion 
 Parameterization of transfer matrix in the absence of RF  
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Longitudinal displacements are counted relative to the reference particle 

 Elements M16 and M26 are directly related to dispersion 
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 Elements M51 and M52 are bound to others by symplecticity condition  
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where we accounted that 11 22 12 21 1M M M M    
 i.e. for a ring without RF M16, M26, M51 and M52 can be expressed through 

dispersion and its derivative. M56 is independent on other elements   
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Equations of Longitudinal Motion (no acceleration) 
 Orbit lengthening  
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 Momentum compaction: 
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 Equations for the longitudinal motion  
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Effect of Deceleration due to SR on Longit. Motion 

 Motion equation:  
2
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 Introduce Hamiltonian and potential energy 
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 Separatrix boundaries  
2 0 2 0sin sin         

 For small  the transcendent equation for 
finding the second boundary,1, can space be 
using perturbation theory, numerical solution is required for large 0   

 Accounting of acceleration one needs to account vortex electric field due to 
changing magnetic field!!! -> conservation of the phase  
For details see “Theory of Cyclic Accelerators” by Lebedev, Kolomensky 
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Particle Migration due to Scattering out & in RF Bucket 
 In the above consideration we neglected damping due to SR 
 In its absence a particle which was knocked out of the RF bucket will never 

drift back 
 Particles which have energy above 

the bucket separatrix will be 
decelerated, and then they will 
penetrate to lower energy through 
the gap between two RF buckets and 
will continue deceleration to the 
momentum acceptance 

 Probability of a particle to be 
accepted back to the RF bucket 
(due to scattering) is inversely proportional to the ratio of damping time to 
the synchrotron period.  

 For a proton collider it is very big number. 
 Consequently, the probability to jump to another bucket after Touschek 

scattering is strongly suppressed  
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RF Bucket Acceptance in the absence of Acceleration 
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 RF bucket acceptance: 

 Returning to the dimensional variables, for one RF bucket we obtain  
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!!!Here p is taken for one nucleon!!!  
 since all energies we account per one nucleon!!! 

Units for the longitudinal emittance are “eV s/a”  
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Effect of Accelerating Phase on RF Bucket Acceptance  
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 The integral cannot be expressed in 
elementary functions. For practical 
applications it can be approximated as 
follows: 
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This fitting has ±4% accuracy for 0<55 
deg. 
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Perturbation Theory for 
Symplectic Motion 
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Perturbation Theory  
 The symplecticity enables to build an effective perturbation theory 

for the case of coupled motion.  
 For the perturbed   

motion one can write: 
 M – symplectic  
 transfer matrix,  I ΔM M ,  is not required to be symplectic  

 Express the eigenvectors of perturbed motion as a sum of the 
unperturbed ones 

 
 without limitation of generality one can consider that 0ii    for every i.  
 Substituting and using properties of eigen-vectors one obtains 
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Perturbation Theory (2)  
 introducing matrix * *

1 1 2 2p    V v v v v   we rewrite it as 2 matrix eq. 
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 Matrix Vp is built from symplectic vectors and its inverse is:  
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Perturbation Theory (3)  
 Account relationship between eigenvalue corrections and tune shifts 
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Linear Tune Shifts in Strongly Coupled Lattice 
 Let us find tune shifts in strongly coupled lattice for a general case 

local focusing perturbation.  
 Corresponding addition to Hamiltonian: 

22 2 yxyx ysx   
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 Substitution M to the tune shift equation and using the eigen-vector 
parameterization yields:  
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Limitations on the Focusing 
of Interaction Region Quads  
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Collider Type Optics  

 High luminosity –> small beta in IP 
2

*
*

( )
s

s 


   
 Detector requires long drift => very large -function in IR quads 

 
 Therefore, the IR quads introduce major limitation on ring focusing  
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Changes of Tune and -function at Perturbation Location 
 Consider a lattice with one local perturbation =>  
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i.e. the stop-band width  
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 For  > 0 the stability is 
not lost above the half-
integer resonance  

It is used in KEKB 
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Changes of Tune and -function in Linear Approximation  
 In linear approximation  
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Tune and -function Chromaticities 

 Change in momentum changes focusing 
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1 1

2 2 2 4

p

p

  
  
         

   

 Summing for all perturbation sources we have:  
 Estimate for Tevatron collider 
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Contribution of 2 IPs exceeds the ring natural chromaticity of ~20 
 What can be more important is the chromaticity of -functions  
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 The chromaticity of -functions is closely related to the 2nd order 
chromaticity. Affects beam-beam. Has to be suppressed. 
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Correction Tune and -function Chromaticities 

 Sextupoles are used for the correction:  2
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 Location of F and D sextupoles near F and D quads enables 
chromaticity correction for both planes  

 For correction of chromatic -function 
sextupoles located at “right” phases are 
used  
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Correction Tune and -function Chromaticities at 
Tevatron 
 

    
Horizontal chromatic beta-function at the injection 
energy. Blue line is for the original sextupole 
configuration, red - for the proposed correction 

 

Dependence of the vertical betatron tune 
on particle momentum in the collider 

mode. 
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How OptiMX Computes Betatron Tune Shifts 
 All nonlinearities are described by zero length multipoles 
 The closed orbit can be excited by dipole correctors  
 In Reference Orbit mode program finds new CO by iterations with 

accounting all non-linearities. Then it builds new lattice where 
feeddown from high order multipoles are accounted.  
 Consequently, in linear optics calculations all corrections to optics 

are correctly accounted.  
 In View4D|Chromaticity this procedure is produced automatically on 

a number of momentum offsets. That yields dependence of mode 
tunes on momentum 
 Linear and non-linear chromaticities  
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Problems 
1. Using symplecticity condition prove that for the 4x4 matrix written through 2x2 

matrices as P p

q Q

 
 
 

 the following is correct: det( ) det( ) det( ) det( ) 1P p Q q     and 

det( ) det( ), det( ) det( )P Q p q   
2. Using software for analytical computations prove that for a ring without RF  
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3. Prove that for matrix built from symplectic normalized eigen-vectors, 
* *

1 1 2 2p    V v v v v , the following is correct:  
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2
T
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  V UV U  

4. Find dependence of synchrotron frequency on the particle amplitude/action for the 
beam motion in a harmonic RF voltage. Obtain asymptotic dependence for small 
amplitudes.   

5. Restore missed calculations in computation of tune shifts in strongly coupled optics  
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