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Particle Multiplicity in Heavy lon Collisions
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Use of Thermal Concepts in Heavy-lon Collisions

Particle Multiplicity in Heavy lon Collisions

About 30 000 particles are produced in a heavy ion
collision at the LHC.

Hence: Use Concepts from Statistical Mechanics to
analyze the final state
e.g. use Energy Density, Particle Density, Pressure,
Temperature, Chemical Composition, ...

These concepts turn out to be useful at all energies, RHIC,
SPS, GSI ...
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Hadronic Gas before Chemical Freeze-Out

Conclus

J.C. and H. Satz, Z. fuer Physik C57, 135, 1993.
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The Theoretical Basis for the Thermal Model

Bjorken scaling + Transverse expansion

After integration over pr (and ONLY! after integration over pr)

dN;/dy NP

dNj/dy ~ NP

where N? is the particle yield
as calculated in a fireball AT REST!

Effects of hydrodynamic flow cancel out in ratios.
The volume is given by mR?7 |
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The Theoretical Basis for the Thermal Model
The number of particles of type i is determined by:

dN; Plu, | pi
Ed3p @r )3/dakp exp( T + T>

Integrating this over all momenta

: P
N 2)3/‘“[ /EpeXp< T +T)

box must be a four-vector, only u” is available as a four-vector

N; = /da,\u/\N,Q(T, 1)

If the temperature and chemical potential are unique along the freeze-out curve

N = N(T.p) [ oy )
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The Theoretical Basis for the Thermal Model
In general

If hydrodynamics is the basic underlying mechanism, then,
after integration over pr and y

e

NN

<

where N? is the particle yield
as calculated in a fireball AT REST!

This is because N; is a Lorentz invariant quantity unaffected by
boosts and flows. This needs the freeze-out temperature to be
the same for all particles which may not be the case always.
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This does NOT mean that the freeze-out has to be
instantaneous. The only requirement is that the freeze-out
temperature has to be the same along the freeze-out curve.

200

7 |fin]

H. Niemi and G.S. Denicol arxiv 1404.7327
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Uncertainties in the Thermal Model

Uncertainties are related to the information in the Particle Data
Booklet.
Particle yields are determined from:

Ni=> NBr(j — ).
J

Hence one must know how hadronic resonances decay.

As an example, the final yield of 7 *’s is given by
N+ = N+ (thermal) + N, +(resonance decays)

depending on the temperature, over 80% of observed pions are
due to resonance decays
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Chemical Freeze-Out: Criteria
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Chemical Freeze-Out Temperature
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pg as a function of /syn

1.308 GeV

S) = .
#e(VS) = o7 GeV'v/5

This predicts at LHC ug ~ 1 MeV.

J. C., H. Oeschler, K. Redlich, S. Wheaton
Phys. Rev. C73 034905 (2006)
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J. Randrup and J.C., Eur. Phys. J. A 52 (2016) 218.
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Kir Ratios and Baryon Density

argy region.  Conclus
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1) The K*/ ratio peaks at Vsyy ~ 8 GeV,

K-/ ratio merges with K*/m at higher collision energy
2) Model: Baryon density peaks at Vs, ~ 8 GeV
3) Atvsyy >8 GeV, pair production becomes important

0.16

STAR: 1701.07065; J. Randrup and J. Cleymans, Phys. Rev. C74, 047901(2006)

Nu Xu
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v, vs. Energy: Softest Point?

argy region.  Conclus
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1) Minimum at s, = 10 GeV for
net-proton and net-A, but net-
Kaon data continue
decreasing as energy
decreases

2) At low energy, or in the region
where the net-baryon density
is large, repulsive force is
expected, v, slope is large and
positive!

3) Softest point only for baryons?

4) Need an explaination!

- M. Isse, A. Ohnishi et al, PR €72, 064908(05)
-Y. Nara, A. Ohnishi, H. Stoecker, PRC94, 034906(16),
arXiv: 1601.07692

NuXu  Reimei Workshop: “Hadronic Resonances and Dense Nuclear Matter”, IQBRC, Japan, December 11 - 14, 2017 14132
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«<m;> - mis g measure of the thermal excitation, i.e. temperature

* observed plateau in <my> is characteristic of a 1! order phase transition
* dN/dy ~ In(\/sNN) may represent the entropy

* E;includes mass and is assocaited with the energy density

Grazyna Odyniec/LBNL WPCF 2015, Warsaw 50



The NICA energy region.

J.C., H. Oeschler, K. Redlich, S. Wheaton,
Phys. Lett. B615 (2005) 50-54

In the statistical model a rapid change is expected as the
hadronic gas undergoes a transition from a baryon-dominated
to a meson-dominated gas. The transition occurs at a

e temperature T = 151 MeV,

However,

the sharpness of the peak in the K+ /7" ratio suggests that
something more is happening.

Also, in the thermal model this transition leads to peaks in the
AN/ (m), KT /x", =7 /= and Q~ /= ratios which occur at
different beam energies.
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J.C., H. Oeschler, K. Redlich, S. Wheaton,
Phys. Lett. B615 (2005) 50-54

In the statistical model a rapid change is expected as the
hadronic gas undergoes a transition from a baryon-dominated
to a meson-dominated gas. The transition occurs at a

e temperature T = 151 MeV,

e baryon chemical potential ug = 327 MeV,

However,

the sharpness of the peak in the K* /7" ratio suggests that
something more is happening.

Also, in the thermal model this transition leads to peaks in the
N/ (m), KT /x", =7 /= and Q~ /= ratios which occur at
different beam energies.



The NICA energy region.

J.C., H. Oeschler, K. Redlich, S. Wheaton,
Phys. Lett. B615 (2005) 50-54

In the statistical model a rapid change is expected as the
hadronic gas undergoes a transition from a baryon-dominated
to a meson-dominated gas. The transition occurs at a

e temperature T = 151 MeV,

e baryon chemical potential ug = 327 MeV,

e energy /syy = 11 GeV.
However,
the sharpness of the peak in the K+ /7" ratio suggests that
something more is happening.
Also, in the thermal model this transition leads to peaks in the
N/ (m), KT /x", =7 /= and Q~ /= ratios which occur at
different beam energies.
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Conclusions

e Maximum in K™ /7™ ratio is in the NICA energy region,
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Conclusions

e Maximum in K™ /7™ ratio is in the NICA energy region,
e Maximum in A/ ratio is in the NICA energy region,
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Conclusions

e Maximum in K™ /7™ ratio is in the NICA energy region,
e Maximum in A/ ratio is in the NICA energy region,

e Maximum in the net baryon density is in the NICA energy
region,




Conclusions

Maximum in K+ /7 ratio is in the NICA energy region,
Maximum in A/ ratio is in the NICA energy region,
Maximum in the net baryon density is in the NICA energy
region,

Transition from a Baryon dominated system to a Meson
dominated one happens in the NICA energy region.

Conclus
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Good Luck NICA, MPD and BM@N
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