Overview of Baryonic Matter at Nuclotron (BM@N)

JINR (Dubna), IHEP (Protvino), INR RAS (Troitsk), ITEP (Moscow), SINR MSU, MEPHI

Plovdiv Uni, WUT (Warsaw), Goethe Uni (Frankfurt), MoU with GSI (Darmstadt) + SRC team

M.Kapishin

Complex NICA

Parameters of Nuclotron for BM@N experiment: E_{beam} = 1-6 GeV/u; *beams: from* p to Au; Intensity~10⁷ c⁻¹ (Au)

Heavy Ion Collision experiments

BM@N: √s_{NN}=2.3 - 3.5 GeV

I. In A+A collisions at Nuclotron energies:

Opening thresholds for strange and multistrange hyperon production

> strangeness at threshold

Need more precise data for strange mesons and hyperons, multi-variable distributions, unexplored energy range

 \blacktriangleright Collective flows v₁, v₂

II. In p+p, p+n, p+A collisions:

Aadron production in elementary reactions and ,cold' nuclear matter as ,reference' to pin down nuclear effects

M.Kapishin

BM@N experiment

 10^{-3}

Heavy-ions A+A: Hypernuclei production

In heavy-ion reactions: production of hypernuclei through coalescence of Λ with light fragments enhanced at high baryon densities

D Maximal yield predicted for $\sqrt{s}=4-5A$ GeV (stat. model) (interplay of Λ and light nuclei excitation function)

→ BM@N energy range is suited for the search of hypernuclei
M.Kapishin BM@N experiment

BM@N setup

BM@N advantage: large aperture magnet (~1 m gap between poles)

 \rightarrow fill aperture with coordinate detectors which sustain high multiplicities of particles

 \rightarrow divide detectors for particle identification to "near to magnet" and "far from magnet" to measure particles with low as well as high momentum (p > 1-2 GeV/c)

 \rightarrow fill distance between magnet and "far" detectors with coordinate detectors

M.Kapishin

BM@N experiment

• Central tracker (Si + GEM) inside analyzing magnet to reconstruct AA interactions

- Outer tracker (CSC, DCH) behind magnet to link central tracks to ToF detectors
- ToF system based on mRPC and T0 detectors to identify hadrons and light nucleus
- ZDC calorimeter to measure centrality of AA collisions and form trigger
- Detectors to form T0, L1 centrality trigger and beam monitors
- Electromagnetic calorimeter for γ,e+e-

- Central tracker inside analyzing magnet \rightarrow 6 GEM detectors 163 x 45 cm² and 3 forward Si strip detectors for tracking
- Full ToF-400, ToF-700, T0 + Trigger barrel and Si detectors, full ZDC, part of ECAL, CSC and DCH chambers as outer tracker Program:
- Measure inelastic reactions Ar (Kr) + target \rightarrow X on targets Al, Cu, Sn, Pb
- \rightarrow Hyperon production measured in central tracker (Si + GEM)
- \rightarrow Charged particles and nuclear fragments identified with ToF-400,700
- \rightarrow Gamma and multi-gamma states identified in ECAL
- \rightarrow 130 M events in Ar beam, 50 M events in Kr beam

+ analyze data from previous technical runs with Deuteron and Carbon beams of 3.5 - 4.6 GeV/n performed in December 2016 and March 2017 M.Kapishin BM@N experiment

BM@N central tracker in Ar, Kr run, March 2018

7 planes of big GEM detectors 3 planes of Si detector in front of GEMs

Beam crosses Si detectors in center, big GEMs – in beam hole \rightarrow configuration is based on results of Λ and K⁰_S simulation

Precise 3D measurement of all major components of BM@N setup ! (A.Kolesnikov + firm)

M.Kapishin

BM@N set-up in Ar, Kr run, March 2018

CSC chamber

ToF-400 installation

BM@N experiment

New detector components: 6 big GEMs, trigger detectors, 3 Si detectors, CSC chamber, full set of ToF detectors

M.Kapishin

BM@N setup behind magnet, 2018

-9

Tests of GEM detector 163 x 45 cm²

GEM group, talk of A.Maksymchuk

M.Kapishin

isnin

BM@N experiment

• for BM@N run in spring 2018 7 detectors 163 x 45 cm² are produced at CERN workshop

Forward silicon strip detectors

Silicon detector group, talk of N.Zamiatin

Si-GEM residuals (cm) vs strip number

Kr beam fragments in Si Vertex

umber detector • 2-coordinate Si detector X-X'(±2.5°) with strip pitch of 95/103 µm, full size of 25 x 25

• Detector combined from 4 sub-detectors arranged around beam, each sub-detector consists of 4 Si modules of 6.3 x 6.3 cm²

• 1 detector installed in front of GEM tracker in March 2017, 2 vertex detectors \rightarrow in March 2018

BM@N experiment

cm², 10240 strips

M.Kapishin

Beam momentum measured with GEM tracker

Carbon beam run, 4 AGeV

Talk of S.Merz

Reconstruction of carbon beam trajectory and momentum in GEM detectors at different values of magnetic field

Gas mixture: Ar + CO₂ (70:30)

M.Kapishin

Beam Momentum measured with DCH outer tracker

Momentum vs. Int(BdL)

M.Kapishin

BM@N experiment

Talk of N.Voitishin

Λ in deuteron and carbon beams

d (C) + target \rightarrow X

Λ signal width of 2.4 - 3 MeV

Deuteron Data

talk of A.Zinchenko

Carbon beam run, 4 AGeV

To improve vertex and momentum resolution and reduce background under Λ :

- Need few planes of forward Silicon detectors \rightarrow 3 planes used in last run
- Need more GEM planes to improve track momentum reconstruction

Methodical Paper published in PPNL: First results from BM@N technical run with deuteron beam

ToF-400 and ToF-700 based on mRPC

2102 3149

BM@N beam axis

M.Kapishin

Outer Tracker: new Cathode Strip Chamber

Al. Vishnevsky + GEM team

C, Ar and Kr runs in March 2018: CSC chamber installed in front of ToF-400 to check its performance as Outer tracker for heavy ion beams

ZDC hadron calorimeter Talk of O.Gavrischuk

- Collect deuteron, carbon beam data with ZDC at different positions
- Calibration of cell amplitudes to get beam energy in cluster
- Spread of energies reconstructed at different ZDC positions ~3%

Talk of A.Ivashkin: MPD / CBM type of calorimeter

A proposal for BM@N experiment

to study SRC with hard inverse kinematic reactions

JINR (Dubna): BM@N **Israel:** Tel Aviv University Germany: TUD and GSI USA: MIT FRANCE: CEA

- identify 2N-SRC events with inverse
- study isospin decomposition of 2N-SRC

A-2

study A-2 spectator nuclear system

BMN & SRC set-up

Cuts

|θ_{1,2}-30°|<6.5° |Δφ_{1,2}|<7.5°

|s,t,u|>2 (GeV/c)² P_{miss} >0.275 GeV/c

Trigger: T0 · T1 · T2 · TC1 · TC2

Signal rates for 14 days of data taking

Within LAND acceptance

T0 +Target + T1

 ${}^{12}C + p \rightarrow {}^{10}B + pp \text{ np SRC}$ ${}^{12}C + p \rightarrow {}^{10}B + pp \text{ pp SRC}$ ${}^{12}C + p \rightarrow 2p + {}^{10}B + n \text{ np SRC}$ ${}^{12}C + p \rightarrow 2p + {}^{10}B + n \text{ np SRC}$ ${}^{12}C + p \rightarrow 2p + {}^{10}B + p \text{ pp SRC}$

→ First SRC @ BMN run in March 2018: collected 8 M events

 Table 1. Beam parameters and setup at different stages of the experiment

year	2016	2017 spring	2018 spring	2020	2021 and later
beam	$d(\uparrow)$	С	Kr, Ar C (SRC)	Au	Au, p
max.inter sity, Hz	ⁿ 0.5M	0.5M	0.5M	$1\mathrm{M}$	$10\mathrm{M}$
trigger rate, Hz	5k	5k	10k	10k	20k→50k
$\operatorname{central}$	6 GEM	6 GEM	6 GEM	7 GEM	$7 \mathrm{GEMs}$
tracker status	half pl.	half pl.	half pl. 3 small Si planes	full pl. small + 4 large Si planes	small + 4 large Si planes
experim.	techn.	techn.	techn.	stage 1	stage 2
status	run	run	run	physics	physics

Present status and next plans

- BM@N technical runs performed with deuteron and carbon beams at energies T₀ = 3.5 - 4.6 AGeV and recently with Ar beam of 3.2 AGeV and Kr beam of 2.3 AGeV
- Measurement of Short Range Correlations with inverse kinematics: C beam + H₂ target
- Major sub-systems are operational, but are still in limited configurations: GEMs, forward Silicon detectors, Outer tracker, ToF, ZDC, ECAL, trigger, DAQ, slow control, online monitoring
- Algorithms for event reconstruction and analysis are being developed, signals of Λ hyperon decays are reconstructed

Major BM@N plans for Au+Au:

- Collaborate with CBM to produce and install large aperture STS silicon detectors in front of GEM setup
- Extend GEM central tracker and CSC outer tracker to full configuration
- Implement beam detectors into vacuum beam pipe, implement vacuum / helium beam pipe through BM@N setup

Actual tasks and Needed contributions

Software and data analysis:

- ► Need man power for calibration, alignment and MC simulations of subdetectors: GEM+CSC, forward Silicon detectors, ToF-700, ECAL, ZDC to analyze already collected data
- Urgent task for algorithms of track and event reconstruction in central tracker and data analysis, but very limited qualified man power
- Charged particle identification based on ToF-400,700 data combined with outer tracks and momentum from central tracker
- ► Reconstruction of e-m clusters and multi-gamma states in ECAL data
- Simulation of large area silicon detectors for STS setup optimization
- **Detectors and hardware for heavy ion beams:**
- construction of large area silicon tracking stations (4 STS stations)
- construction of beam and T0 detectors in vacuum inserts
- construction of vacuum (helium) beam pipe inside BM@N
- Production of CSC chambers for outer tracker

development of fast & compact FEE electronics for GEM and CSC
M.Kapishin
BM@N experiment

Thank you for attention!

M.Kapishin

Backup slides

M.Kapishin

Explore high density baryonic matter

Nuclotron is well suited to study in high density (dominantly baryonic) matter

M.Kapishin

Heavy-ions A+A: Study of the EoS with strangeness

 The nuclear dynamics is defined by the EoS (via density dependent NN-interaction)

Observables sensitive to EoS: collective flow (v₁,v₂,...) particle ratios

Direct information – proton v₁,v₂ Alternative information – via strangeness

□ Experience from SIS and AGS : ratio of K⁺ yield Au+Au/C+C at SIS energies and proton v₁,v₂ favor a soft EoS (somewhat sensitive to the details of models)

→ Density dependence of the EoS can be studied in BM@N by a beam energy scan

M.Kapishin

Nuclotron and BM@N beam line

BM@N

M.Kapishin

BM@N beam line

Beam envelopes at the BM@N area

Beam	Planned intensity of Nuclotron + booster (per cycle)
p , d	5·10 ¹²
¹² C	2·10 ¹¹
⁴⁰ Ar	10 ⁷ at BM@N
¹³¹ Xe	10 ⁶ at BM@N
¹⁹⁷ Au	10 ⁶ at BM@N

Targets: ¹²C,⁶⁴Cu,¹⁹⁷Au, liquid H₂,²H₂

- Plans for extensive upgrade of BM@N beam line:
- \rightarrow new stable power supplies for dipole magnets
- \rightarrow stabilization circuits for existing power supplies for quadruples and dipoles
- \rightarrow non destructive beam position monitoring on movable vacuum inserts
- \rightarrow carbon fiber vacuum beam pipe inside BM@N from the target to the end

M.Kapishin

GEM detector efficiency in deuteron run

Plane efficiency calculated using reconstructed tracks of beam inclined at different angles

GEM residuals after Lorentz alignment

• Fast gas mixture \rightarrow reduced Lorentz shifts, better coordinate resolution

GEM hit residuals to reconstructed tracks in data are reproduced by MC simulation with Garfield parametrization

Primary Vertex reconstruction

$\textbf{C} \textbf{+} \textbf{A} \rightarrow \textbf{X}$ interactions

G.Pokatashkin, I.Rufanov, V.Vasendina and A.Zinchenko

Primary Vertex reconstructed with GEM+Si detectors & Pile-up suppression **Effect of Si detector for Primary Vertex reconstruction**

Event display of Λ decay in C+C collision

 $\Lambda{\rightarrow} p\pi^{-}$ decay reconstruction in GEM + Si tracker in C+C interaction, March 2017

Momentum resolution: Exp. vs MC

G.Pokatashkin, I.Rufanov, V.Vasendina and A.Zinchenko + D.Baranov (Garfield)

✓ Momentum resolution for carbon beam of 8.6 GeV/c ~5.5%.

 ✓ Momentum resolution from MC as function of particle momentum

 ✓ MC results reproduce exp. data for spectator protons and deuteron beam

Trigger barrel and Si detectors in BM@N setup

Trigger group, V.Yurevich

Barrel Detector multiplicity in carbon beam interactions with different targets

NBD1

Simulation of Trigger Barrel and Si detectors

S.Lobastov

ToF-400 in carbon beam interactions

M.Kapishin

Deuteron / carbon beams at BM@N

- structure
- > Pileup in GEM detectors
- Limits DAQ rate to 4-5 kHz

M.Kapishin

BM@N experiment

1000

500

0 -10

-8

-6

-4

-2

0

2

cm

8

6

4