From Hits to Physics: Event Reconstruction in High-Energy Physics Experiments

Prof. Dr. Ivan Kisel

Goethe University Frankfurt am Main FIAS Frankfurt Institute for Advanced Studies GSI Helmholtz Center for Heavy Ion Research

Ivan Kisel, Uni-Frankfurt, FIAS, GSI

JINR, Dubna, 13.04.2018

Cellular Automaton (CA) Track Finder

Useful for complicated event topologies with large combinatorics and for parallel hardware

Our Application of CA in HEP Experiments

Ivan Kisel, Uni-Frankfurt, FIAS, GSI

JINR, Dubna, 13.04.2018 3/28

CA Track Finder in ARES (JINR) and MMbar (PSI)

Problems:

- Search for rare decays
- Detector inefficiency
- Electronics noise
- Slow PC

Solution:

• Determine track direction from clusters

5

Number

300 200 100

0

10

20 30 40

(1) target, (2) MWPC, (3) scintillation hodoscopes, (4) lightquides, (5) photomultipliers, (6) electronics, (7)-(9) magnet.

٥

MMbar

Estimation of the track direction from the cluster length

Ivan Kisel, Uni-Frankfurt, FIAS, GSI

Number of clusters

80 90 100

70

50 60

CA Track Finder in NEMO (Modane)

- (1) central frame with the metallic foil,
- (2) tracking device of 10 frames with 2x32 Geiger tubes each,
- (3) scintillator walls of 5x5 counters.

Problems:

- Neutrino experiment
- Very clean
- Cosmics
- Low momentum electrons
- Large multiple scattering on wires

Solution:

• Define a smooth track model

9% higher reconstruction efficiency and a factor 5 higher processing speed

CA Track Finder in HERA-B (DESY)

HERA-B: Track Finding in the Pattern Tracker

Extremely low resolution and efficiency of the pattern tracker

Parameter	OTR	ITR
Hit resolution, μm	500	200
Hit efficiency, $\%$	90	86

Competition between three different approaches developed by the independent groups

CA Track Finder in HERA-B (DESY)

HERA-B Competition: CATS (CA), RANGER (TF), TEMA (HT)

Tracking quality

	CATS		RANGER		TEMA	
Resolutions	OTR	ITR	OTR	ITR	OTR	ITR
$x, \mu m$	246	93	322	91	291	98
y, mm	3.7	1.4	5.0	1.4	4.1	1.4
t_x , mrad	0.62	0.24	0.71	0.24	0.76	0.26
t_y , mrad	4.73	1.79	6.96	1.79	5.39	1.87
Pulls						
$\frac{\text{Pulls}}{P(x)}$	1.59	1.11	1.37	1.10	1.45	1.06
$ \begin{array}{c} \text{Pulls} \\ P(x) \\ P(y) \end{array} $	1.59 1.52	1.11 0.98	1.37 1.25	1.10	1.45 1.81	$1.06 \\ 1.16$
Pulls $P(x)$ $P(y)$ $P(t_x)$	1.59 1.52 1.16	1.11 0.98 0.93	1.37 1.25 1.25	1.10 1.11 0.89	1.45 1.81 1.18	$1.06 \\ 1.16 \\ 1.15$
Pulls $P(x)$ $P(y)$ $P(t_x)$ $P(t_y)$	$ 1.59 \\ 1.52 \\ 1.16 \\ 1.53 $	1.11 0.98 0.93 0.99	$ 1.37 \\ 1.25 \\ 1.25 \\ 1.39 $	1.10 1.11 0.89 1.15	1.45 1.81 1.18 1.92	1.06 1.16 1.15 1.23

Resolutions, pulls P and mean length of reconstructed primary tracks.

CATS outperforms other alternative packages (SUSi, HOLMES, L2Sili, OSCAR; RANGER, TEMA) in efficiency, accuracy and speed

Coasting Beam and the First J/psi Decays found in HERA-B

Provided detailed analysis of data and the first J/ψs found in HERA-B

CA Track Finder in ALICE (CERN)

ALICE High-Level Trigger: Event reconstructed with the Cellular Automaton GPU track finder in the first heavy-ion run of the LHC.

Problems:

- \bullet \sim 10000 charged particles/collision
- High track density
- Huge number of measurements (TPC)

Solution:

- Parallel processing:
 - vectorization,
 - multi-threading,
 - multi-core systems (CPU/GPU)

First HI collisions reconstructed with CA on GPU

CA Track Finder in STAR (BNL)

Since August 2016 the Sti+CA track finder is the standard STAR track finder for offline data production, providing 25% more D⁰ and 20% more W

Eleavor Trecke

Reconstruction Challenge in CBM (FAIR)

A simplified CBM detector setup

- Future fixed-target heavy-ion experiment at FAIR
- Explore the phase diagram at high net-baryon densities ٠
- 10⁷ Au+Au collisions/sec
- ~ 1000 charged particles/collision
 Non-homogeneous magnetic field
 Double-sided strip detectors
- 4D reconstruction of time slices.

Reconstruction Challenge in CBM (FAIR)

CA Track Finder in CBM

Developer	Tracking Method	<2005	>2005
LHEP JINR	Conformal Mapping	~	×
LIT JINR	Track Following	\checkmark	×
ZITI Mannheim	Hough Transform	\checkmark	×
FIAS	Cellular Automaton	~	\checkmark

Fast and efficient track finder

CA Track Finder at High Track Multiplicities in CBM

A number of minimum bias events is gathered into a group (super-event), which is then treated by the CA track finder as a single event.

1 mbias event, <N_{reco}> = 109

5 mbias events, <N_{reco}> = 572

100 mbias events, $\langle N_{reco} \rangle = 10340$

Reliable reconstruction efficiency and time as a second order polynomial w.r.t. to the track multiplicity

Time based 4D CA Track Finder in CBM

Many-Core CPU/GPU Architectures

Ivan Kisel, Uni-Frankfurt, FIAS, GSI

JINR, Dubna, 13.04.2018 18/28

Kalman Filter (KF) Track Fit

KF Track Fit on Cell

	Stage	Description	Time/track	Speedup	
C		Initial scalar version	12 ms	_	
	1	Approximation of the magnetic field	$240~\mu{\rm s}$	50	
ΞΥ	2	Optimization of the algorithm	$7.2~\mu{ m s}$	35 >	10000x faster on any PC
	3	Vectorization	$1.6~\mu { m s}$	4.5 J	
	4	Porting to SPE	$1.1~\mu{ m s}$	1.5	
ပီ႑	5	Parallelization on 16 SPEs	$0.1~\mu{ m s}$	10	
		Final simulized version	$0.1~\mu{ m s}$	120000	

Comp. Phys. Comm. 178 (2008) 374-383

The KF speed was increased by 5 orders of magnitude

blade11bc4 @IBM, Böblingen: 2 Cell Broadband Engines, 256 kB LS, 2.4 GHz

Motivated by, but not restricted to Cell !

KF Track Fit on CPU, Phi, GPU

- Precise estimation of the parameters of particle trajectories is the core of the reconstruction procedure.
- The track fit performance on a single node: 2*CPU+2*GPU = 10⁹ tracks/s = (100 tracks/event)* 10⁷ events/s = 10⁷ events/s.
- One computer is enough to estimate parameters of all particles produced at 10⁷ interaction rate!

Fast, precise and portable Kalman filter track fit

KF Particle: Reconstruction short-lived Particles in CBM

Simulated AuAu collision at 25 AGe

 $\overline{\Omega}{}^+ \longrightarrow \overline{\Lambda} \operatorname{K}{}^+ \underset{\downarrow \overline{p} \pi^+}{\downarrow \overline{p} \pi^+}$

// construct anti Lambda
// improve momentum and mass
// construct anti Omega
// clean the primary vertex
// add Omega to the primary vertex
// Omega is fully fitted
// K, Lambda are fully fitted
// p, pi are fully fitted

Concept:

- Mother and daughter particles have the same state vector and are treated in the same way
- · Reconstruction of decay chains
- Kalman filter based
- Geometry independent
- Vectorized
- Uncomplicated usage

Functionality:

- Construction of short-lived particles
- Addition and subtraction of particles
- Transport
- Calculation of an angle between particles
- Calculation of distances and deviations
- Constraints on mass, production point and decay length
- KF Particle Finder

Reconstruction of decays with a neutral daughter by the missing mass method:

KF Particle provides a simple and direct approach to physics analysis (used in CBM, ALICE and STAR)

KF Particle, Finder for Physics Analysis and Selection

KF Particle Finder for Physics Analysis and Selection

More than 100 decay channels online

(mbias: 1.4 ms; central: 10.5 ms)/event/core

Clean Probes of Collision Stages

AuAu, 10 AGeV, 3.5M central UrQMD events, MC PID

Standalone First Level Event Selection (FLES) Package in CBM

The FLES package is vectorized, parallelized, portable and scalable up to 3 200 CPU cores

Search for short-lived Particles in CBM and STAR

Within the FAIR Phase-0 program the CBM KF Particle Finder has been adapted to STAR and applied to real data of 2016, 2014 and BES-I in order to investigate decays of strange (K^{\pm} , Λ , Ξ^{-} , Ω^{-}), open charm (D^{0} , D^{+} , D_{s}^{+} , Λ_{c}^{+}) and other particles with the KF Particle Finder.

CBM, 5M central Au+Au, 10 AGeV, PHSD

Preparation for the real-time physics analysis during BES-II is in progress

STAR, 1.3M mbias Au+Au, 200 AGeV, Run 2016

Summary

- ✓ More than 25 years of experience in event reconstruction in HI and HEP experiments.
- ✓ Efficient and fast reconstruction of stable and long-lived particles with the CA Track Finder
- ✓ Precise and extremely fast estimation of particles parameters together with their covariance matrices with the KF Track Fitter
- ✓ Accurate and clean reconstruction of short-lived particles with the KF Particle package
- ✓ KF Particle Finder is a universal platform for short-lived particles reconstruction and physics analysis in on- and off-line modes
- ✓ Reconstruction is highly parallelized and vectorized for use on many-core CPU/Phi/GPU computer architectures
- ✓ Within FAIR Phase-0 develop a common CBM+STAR event reconstruction package based on the CBM FLES package