# From Hits to Physics: <br> Event Reconstruction <br> in High-Energy Physics Experiments 

Prof. Dr. Ivan Kisel<br>Goethe University Frankfurt am Main FIAS Frankfurt Institute for Advanced Studies GSI Helmholtz Center for Heavy Ion Research

## Cellular Automaton (CA) Track Finder



Useful for complicated event topologies with large combinatorics and for parallel hardware

## Our Application of CA in HEP Experiments




## CBM (FAIR/GSI)

## PANDA (FAIR/GSI)



## CA Track Finder in ARES (JINR) and MMbar (PSI)

## ARES

MMbar


Problems:

- Search for rare decays
- Detector inefficiency
- Electronics noise
- Slow PC


## Solution:

- Determine track direction from clusters

(1) target, (2) MWPC, (3) scintillation hodoscopes,
(4) lightguides, (5) photomultipliers, (6) electronics, (7)-(9) magnet.


Estimation of the track direction from the cluster length

## CA Track Finder in NEMO (Modane)


$9 \%$ higher reconstruction efficiency and a factor 5 higher processing speed

## CA Track Finder in HERA-B (DESY)



- Non-uniform magnetic field
- Single/Double-sided strip detectors (fakes)
- Honeycomb drift chambers (L/R ambiguity)

Solution:

- Bad detector performance


## HERA-B: Track Finding in the Pattern Tracker



Extremely low resolution and efficiency of the pattern tracker

| Parameter | OTR | ITR |
| :--- | :---: | :---: |
| Hit resolution, $\mu \mathrm{m}$ | 500 | 200 |
| Hit efficiency, $\%$ | 90 | 86 |



[^0]
## CA Track Finder in HERA-B (DESY)



## HERA-B Competition: CATS (CA), RANGER (TF), TEMA (HT)




Tracking quality
Resolutions, pulls $P$ and mean length of reconstructed primary tracks.

|  | CATS |  | RANGER |  | TEMA |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Resolutions | OTR | ITR | OTR | ITR | qTR | ITR |
| $x, \mu \mathrm{~m}$ | 246 | 93 | 322 | 91 | 291 | 98 |
| $y, \mathrm{~mm}$ | 3.7 | 1.4 | 5.0 | 1.4 | 4.1 | 1.4 |
| $t_{x}, \mathrm{mrad}$ | 0.62 | 0.24 | 0.71 | 0.24 | 0.76 | 0.26 |
| $t_{y}, \mathrm{mrad}$ | 4.73 | 1.79 | 6.96 | 1.79 | 5.39 | 1.87 |
| Pulls |  |  |  |  |  |  |
| $P(x)$ | 1.59 | 1.11 | 1.37 | 1.10 | 1.45 | 1.06 |
| $P(y)$ | 1.52 | 0.98 | 1.25 | 1.11 | 1.81 | 1.16 |
| $P\left(t_{x}\right)$ | 1.16 | 0.93 | 1.25 | 0.89 | 1.18 | 1.15 |
| $P\left(t_{y}\right)$ | 153 | 0.99 | 139 | 1.15 | 102 | 1.23 |
| Hits $/$ track | 31 | 23 | 26 | 21 | 31 | 21 |

## Coasting Beam and the First J/psi Decays found in HERA-B




Provided detailed analysis of data and the first $\mathrm{J} / \psi \mathrm{s}$ found in HERA-B

## CA Track Finder in ALICE (CERN)



ALICE High-Level Trigger:
Event reconstructed with the Cellular Automaton GPU track finder in the first heavy-ion run of the LHC.

Problems:

- ~ 10000 charged particles/collision
- High track density
- Huge number of measurements (TPC)

Solution:

- Parallel processing:
- vectorization,
- multi-threading,
- multi-core systems (CPU/GPU)

First HI collisions reconstructed with CA on GPU


Problems:

- > 1000 charged particles/collision
- High track density
- Large number of measurements (TPC)

Solution:

- Parallel processing:
- vectorization, multi-threading,
- multi-core systems (CPU/Phi)


|  | Online TPC |
| :--- | :---: |
| Efficiencv and ratio, \% |  |
| Ref Set | 96.6 |
| All Set | 88.6 |
| Clone | 10.6 |
| Ghost | 12.6 |
| Tracks/ev | 659 |
| Time/ev, ms | 47 |


| All set: | $p \geq 0.05 \mathrm{GeV} / \mathrm{c}$ |
| :--- | :--- |
| Reference set: | $\mathrm{p} \geq 1 \mathrm{GeV} / \mathrm{c}$ |
| Ghost: | purity $<90 \%$ |

Since August 2016 the Sti+CA track finder is the standard STAR track finder for offline data production, providing $\mathbf{2 5 \%}$ more $\mathrm{D}^{\mathbf{0}}$ and $\mathbf{2 0 \%}$ more $\mathbf{W}$

## Reconstruction Challenge in CBM (FAIR)



- Future fixed-target heavy-ion experiment at FAIR
- Explore the phase diagram at high net-baryon densities
- $10^{7}$ Au+Au collisions/sec
- ~ 1000 charged particles/collision
- Non-homogeneous magnetic field
- Double-sided strip detectors
- 4D reconstruction of time slices.



## Reconstruction Challenge in CBM (FAIR)



The full event reconstruction will be done on-line at the First-Level Event Selection (FLES) and off-line using the same FLES reconstruction package.

- Cellular Automaton (CA) Track Finder
- Kalman Filter (KF) Track Fitter
- KF short-lived Particle Finder

All reconstruction algorithms are vectorized and parallelized.


## CA Track Finder in CBM



| Developer | Tracking Method | $<2005$ | $>2005$ |
| :--- | :--- | :---: | :---: |
| LHEP JINR | Conformal Mapping | $\checkmark$ | $x$ |
| LIT JINR | Track Following | $\checkmark$ | $x$ |
| ZITI Mannheim | Hough Transform | $\checkmark$ | $x$ |
| FIAS | Cellular Automaton | $\checkmark$ | $\checkmark$ |



[^1]
## CA Track Finder at High Track Multiplicities in CBM

A number of minimum bias events is gathered into a group (super-event), which is then treated by the CA track finder as a single event.



5 mbias events, $\left\langle\mathrm{N}_{\text {reco }}>=572\right.$


100 mbias events, $\left\langle\mathrm{N}_{\text {reco }}>=10340\right.$


Reliable reconstruction efficiency and time as a second order polynomial w.r.t. to the track multiplicity

## Time-based 4D CA Track Finder in CBM



- The beam in the CBM will have no bunch structure, but continuous.
- Measurements in this case will be 4D ( $x, y, z, t$ ).
- Significant overlapping of events in the detector system.
- Reconstruction of time slices rather than events is needed.

Total CA time $=84 \mathrm{~ms}$
Speed-up factor due to parallelization within the time-slice

| Efficiency, \% | 3 D | 4 D |
| :--- | :--- | :--- |
| All tracks | 83.8 | 83.0 |
| Primary high- $p$ | 96.1 | 92.8 |
| Primary low-p | 79.8 | 83.1 |
| Secondary high- $p$ | 76.6 | 73.2 |
| Secondary low- $p$ | 40.9 | 36.8 |
| Clone level | 0.4 | 1.7 |
| Ghost level | 0.1 | 0.3 |
| Time/event/core, ms | 8.2 | 8.5 |



## Many-Core CPU/GPU Architectures



Future systems are heterogeneous. Fundamental redesign of traditional approaches to data processing is necessary

## Kalman Filter (KF) Track Fit

Estimation of the track parameters at one or more hits along the track - Kalman Filter (KF)


## KF Track Fit on Cell



The KF speed was increased by 5 orders of magnitude

blade11bc4 @IBM, Böblingen:
2 Cell Broadband Engines, 256 kB LS, 2.4 GHz

## KF Track Fit on CPU, Phi, GPU







- Precise estimation of the parameters of particle trajectories is the core of the reconstruction procedure.
- The track fit performance on a single node: $2^{*} C P U+2^{*} G P U=10^{9}$ tracks/s = (100 tracks/event $)^{*} 10^{7}$ events $/ \mathrm{s}=10^{7}$ events $/ \mathrm{s}$.
- One computer is enough to estimate parameters of all particles produced at $10^{7}$ interaction rate!

Fast, precise and portable Kalman filter track fit

## KF Particle: Reconstruction short-lived Particles in CBM



$$
\begin{aligned}
\bar{\Omega}+ & \\
& \bar{\Lambda} \mathrm{K}+ \\
& \hookrightarrow \overline{\mathrm{P}} \pi^{+}
\end{aligned}
$$

KFParticle Lambda(P, Pi);
Lambda.SetMassConstraint(1.1157);
KFParticle Omega(K, Lambda);
PV -= (P; Pi; K);
PV += Omega;
Omega.SetProductionVertex(PV);
(K; Lambda).SetProductionVertex(Omega);
(P; Pi).SetProductionVertex(Lambda);
// construct anti Lambda
// improve momentum and mass
// construct anti Omega
// clean the primary vertex
// add Omega to the primary vertex
// Omega is fully fitted
// K, Lambda are fully fitted
// p, pi are fully fitted

## Concept:

- Mother and daughter particles have the same state vector and are treated in the same way
- Reconstruction of decay chains
- Kalman filter based
- Geometry independent
- Vectorized
- Uncomplicated usage


## Functionality:

- Construction of short-lived particles
- Addition and subtraction of particles
- Transport
- Calculation of an angle between particles
- Calculation of distances and deviations
- Constraints on mass, production point and decay length
- KF Particle Finder


## Reconstruction of decays with a neutral daughter by the missing mass method:



## KF Particle Finder for Physics Analysis and Selection



More than 100 decay channels online

## KF Particle Finder for Physics Analysis and Selection



More than 100 decay channels online

## Clean Probes of Collision Stages



AuAu, 10 AGeV , 3.5M central UrQMD events, MC PID

## Standalone First Level Event Selection (FLES) Package in CBM



The FLES package is vectorized, parallelized, portable and scalable up to 3200 CPU cores

## Search for short-lived Particles in CBM and STAR

Within the FAIR Phase-0 program the CBM KF Particle Finder has been adapted to STAR and applied to real data of 2016, 2014 and BES-I in order to investigate decays of strange ( $K^{ \pm}, \Lambda, \Xi^{-}, \Omega^{-}$), open charm ( $D^{0}, D^{+}, D_{s}{ }^{+}, \Lambda_{c}+$ ) and other particles with the KF Particle Finder.


CBM, 5M central Au+Au, 10 AGeV , PHSD


Preparation for the real-time physics analysis during BES-II is in progress

## Summary

$\checkmark$ More than 25 years of experience in event reconstruction in HI and HEP experiments.
$\checkmark$ Efficient and fast reconstruction of stable and long-lived particles with the CA Track Finder
$\checkmark \quad$ Precise and extremely fast estimation of particles parameters together with their covariance matrices with the KF Track Fitter
$\checkmark$ Accurate and clean reconstruction of short-lived particles with the KF Particle package
$\checkmark \quad$ KF Particle Finder is a universal platform for short-lived particles reconstruction and physics analysis in on- and off-line modes
$\checkmark$ Reconstruction is highly parallelized and vectorized for use on many-core CPU/Phi/GPU computer architectures
$\checkmark \quad$ Within FAIR Phase-0 develop a common CBM+STAR event reconstruction package based on the CBM FLES package


[^0]:    Competition between three different approaches developed by the independent groups

[^1]:    Fast and efficient track finder

