Slow magnetic monopoles search in NOvA

Alexander Antoshkin (DLNP JINR)

30 November 2017

NuMI **O**ff-Axis e **A**ppearance

30 November 2017

NOvA Collaboration

260 scientists from 7 Countries (44 Institutions), are looking for Neutrino Oscillations

30 November 2017

NOvA experiment. Design

NOvA is a long-baseline accelerator neutrino experiment. It is a very powerful tool for measurements of different neutrino parameters.

30 November 2017

NOvA Goals

- > Within v_e appearance NOvA catchs mass hierarchy and CP-violation phase
- > Within v_{μ} disappearance NOvA precisely measures θ_{23} octant
- Search beyond the Standard Model
 - Sterile neutrino(s)
 - Dark Matter
 - Magnetic monopoles
- Look into the Universe
 - Supernova neutrinos
 - Cosmic rays
 - Gravitational waves coincidence
- Within high intensity neutrino beam NOvA Near Detector measures neutrino cross-sections

NOvA at JINR

- Remote Operation Center at Dubna (ROC-Dubna)
- NOvA test benches at JINR
- Computing Infrastructure including LIT resources
- MC Simulation and Theory effort from BLTP
- > v_e Analysis optimization
- Neutrino signal from Supernova
- Study of the Cosmic Ray (Muons)
- Search for Slow Monopole
- Near Detector Measurements

NOvA Detectors (Monopole)

Far Detector

g = 68.5 en $M_m \sim 10^{17}$ GeV/c^2 B

NOvA Far Detector is located near the surface. It's a good opportunity to detect lighter monopoles which do not penetrate far into the earth even with the problem of huge cosmic background.

Beam Direction

NOvA Test Bench (electronics)

Great thank to Krumstein Z.V. for general support!
 Great thank to Anfimov N.V. for bench construction!
 Great thank to Sotnikov A.P. for help with software!

Electronics response to long signals. Monopole measurements within test bench

Why are we interested in monopoles?

Quantum mechanical formulation of the **magnetic monopoles** was made by Paul Dirac in 1931. Searches for these particles are very important for several reasons:

- > Their existence would explain the quantization of electric charge.
- It is possible to restore symmetry between electricity and magnetism by means their introduction into the theory of electromagnetism.
- Magnetic monopoles naturally appears in Grand Unification Theories (GUT).

NOvA Potential. Monopole Flux

30 November 2017

Monopoles properties

$\beta = \nu/c = velocity/speed of light$

-----C Stre-tw-stre Blickly NAS. g = ± 137e/2 (Ahlen) β = 10⁻¹ 1000 x Muor Protons (Lindhard) 1.0 E 5 Ē σ Measurements $\beta = 10^{-2}$ -100for protons in Si 100 x Muon ų 0 Protons (Bethe) 0.05 $\beta = 10^{-3}$ = ± 137e/2 via eq. (60) 10 x Muon 3000 4000 NOVA - ENAL E929 0.005 0.01 0.05 0.1 0.5 1.0 ß 5 MeV g⁻¹cm⁻² Event: 1 / JTC Thu Jan 1, 1970 25302535 2540 0:00:0.00000000 -"Minimum Ionizing" Ritson 50 $\mu s \rightarrow \beta = 10^{-3}$ **Highly ionizing particle** 10-3 10-4

30 November 2017

Slow magnetic monopoles search in NOvA

Monopole energy loss

Data Samples

- Monte Carlo (Simulated monopoles + 5 ms long non-bias data produced by the daily SNEWS trigger → true monopole and nominal detector activity). Four velocities β_{sim}: 5 x 10⁻⁴, 1 x 10⁻³, 5 x 10⁻³, 1 x 10⁻².
- Slow Monopoles Triggered Events (Slow Monopole Trigger → first run is 19728, last one is 20752 for Low Gain (100*) and 20753 like the first one for the new Data Set with High Gain (150*).)
- * It means APD Gain.

Event selector and algorithm.

- Slow monopole trigger primal selector (High ionization)
- Offline reconstruction secondary selection ("slow" tracks)
- Final check Linear Regression coefficient and Time Gap Fraction. In a nutshell we try to extract something

Slow Monopoles – What if you select an event?

Discovery of monopoles =

- Claiming to discover monopoles when you haven't =
- If there's no event in the box, everything is OK!
- If there is, we have a plan:
 - Check the event, is it clearly not a monopole? If so, it's OK.
 - Otherwise (event looks like monopole), we have to check:
 - dE/dx and timing distributions
 - Running conditions, other events in the run and various parameters

Not the

best

analysis!

Velocity vs. Regression coefficient 10% Data. Results

 Let us see how our cut performs as a function of reconstructed velocity.
 Data: black
 MC: red
 Signal: green

Conslusions and future plans

- NOvA far detector is pretty sensitive to lighter monopoles and has the unique potential to "touch" a new region of phase space due to it's location on the surface and our large surface area. These factors give us very high chance to "catch" the magnetic monopoles.
- Slow Monopole Trigger works pretty good.
- Special "cutter" and "selector" were developed. We tested only 10% of Low Gain data. Remaining data are waiting for us! Technote is ready.
- Right now we asked to allow us apply the "cutter" for remaining data. Collaboration gave us useful comments. We solved the majority of issues and shortcomings.
- > I started to observe **High Gain** data.
- We still don't see any good candidates in real data but our "cutter" and "selector" perfectly work on Monte Carlo events.

Current activities (1/2)

NOvA test bench for measurements of the NOvA scintillator properties

30 November 2017

Current activities (2/2)

- 1) Great thank to Anfimov N. and Samoylov O. for ROC-Dubna construction.
- 2) Great thank to Sheshukov A. for help with backup connection solution.
- 3) More then 1 year ago I became ROC-Dubna liaison everything inside it is my duty!
- 4) NOvA JINR team is really large ROC-Dubna helps us to cover our shift quotas right now we have more then 50 days of shift time. Even our Moscow colleagues usually take shifts from here.

Publications

- Measurement of the neutrino mixing angle θ23 in NOvA [arXiv:1701.05891]. Published in Phys.Rev.Lett. 118 (2017) no.15, 151802
- Constraints on Oscillation Parameters from ve Appearance and vµ Disappearance in NOvA [arXiv:1703.03328]. Published in Phys.Rev.Lett. 118 (2017) no.23, 231801
- Search for active-sterile neutrino mixing using neutral-current interactions in NOvA [arXiv:1706.04592]. Published in Phys.Rev. D96 (2017) no.7, 072006
- First measurement of the Sivers asymmetry for gluons from SIDIS data [arXiv:1701.02453]. Published in Phys.Lett. B772 (2017) 854-864
- First measurement of transverse-spin-dependent azimuthal asymmetries in the Drell-Yan process [arXiv:1704.00488]. *Published in Phys.Rev.Lett.* 119 (2017) no.11, 112002
- Observation of X(3872) muoproduction at COMPASS [arXiv:1707.01796]
- New analysis of $\eta\pi$ tensor resonances measured at the COMPASS experiment [arXiv:1707.02848]
- Transverse-momentum-dependent Multiplicities of Charged Hadrons in Muon-Deuteron Deep Inelastic Scattering [arXiv:1709.07374]
- Longitudinal double-spin asymmetry Ap1 and spin-dependent structure function gp1 of theproton at small values of x and Q2 [arXiv:1710.01014]

30 November 2017

Talks and pedagogical activities

- Slow magnetic monopoles search in NOvA (AYSS-2017)
- Test bench for measurements of the NOvA scintillator properties at JINR (AYSS-2017)
- > Test bench for measurements of the NOvA scintillator properties at JINR (Poster, 47th PAC)
- Slow magnetic monopoles search in NOvA (Poster, 46th PAC)
- NOvA test bench at JINR (Poster, The 2016 European School of High-Energy Physics)
- NOvA test bench at JINR (AYSS-2016)
- Remote Operation Center at Dubna for NOvA experiment (AYSS-2016)
- NOvA test bench at JINR (Poster, 45th PAC)
- NOvA test bench at JINR (AYSS-2016 Proceedings)
- A. Petrushin bachelor's diploma supervision The NOvA experiment: a study of electronics parameters *finished wirh excellent mark*.
- Laboratory Practice for students based on NOvA test bench
- A. Petrushin magister diploma and D. Velikanova bachelor diploma supervision *in progress*.

Thank you for your attention!

30 November 2017

Backup

30 November 2017

My contribution

- First NOvA test bench at JINR (electronics)
- Second NOvA test bench at JINR (scintillator)
- ROC-Dubna activity ROC liaison
- Slow magnetic monopole search
 - a) Hardware and b) analysis
- > Author since Nov. 2015

Backup (ReadoutSim vs Bench) Hardware test №2

20 ns

30 November 2017

Comparison (one point – 20 ns) Hardware test №2

* T_R is the time of Amplitude changing from 0 to (1-1/e)*Amp_{Max} * T_F is the time of Amplitude changing from Amp_{Max} to Amp_{Max}/e $\rightarrow 0$ is equal to Pedestal

Results Hardware test №2

All units in **µs**

	20 ns	100 ns	500 ns	1 µs	5 µs	10 µs
Bench →	T _R = 0.76	T _R = 0.76	T _R = 0.846	T _R = 1.303	T _R = 3.4	T _R = 5.24
	T _F = 11.24	T _F = 11.17	T _F = 12.25	$T_{_{\rm F}} = 10.74$	T _F = 13.01	T _F ≈ 11
DeedeutCine	T _R = 0.89	T _R = 0.46	T _R = 0.75	T _R = 1.17	T _R = 2.66	T _R = 4.75
ReadoutSIM →	T _F = 15.56	T _F = 13.18	T _F = 9.72	T _F = 9.91	T _F = 13.4	T _F = 13.7

Main results are:

- Points 20 ns, 100 ns, 500 ns, 1 μs have normal linear behavior for both cases but with different slopes: Bench has T_F = 8.376 + 0.00146*Amp, ReadoutSim has T_F = 8.89 + 0.00186*Amp.
- Points **5 \mus and 10 \mus** have «strange» T_F dependence on the Amplitude.
- T_{R} depends on the outer pulse width and it's almost the same for Bench and ReadoutSim.

Monopoles properties

The Dirac's electric charge quantization relation says:

e * g = n * ħc/2 ,

where **e** is a basic electric charge and **n** is an integer. It means that magnetic monopoles could have a magnetic charge (**g**) 68.5 times greater than the charge of the electron. As the result they are expected to be very highly ionizing. "Slow" monopoles with $\beta < 10^{-2}$ can be identified due to their linear tracks with long transit times through the detector. Monopoles with this β take 5 µs to cross the whole detector in comparison with cosmic muon which takes only **50 ns**.

Analysis part Slow monopole trigger

I would like to thank **Enhao Song (University of Virginia)** for providing me with the information about this trigger.

Monopole velocity

Offline reconstruction algorithm → Monopole cluster

- identify cosmic tracks with Cosmic Tracker (on all hits)
- remove hits with less than 100 ADC
- remove hits associated with cosmic tracks
- remove isolated hits

Event 481628 – Monopole Cluster

Offline reconstruction algorithm → Monopole slicer

- run slicer to remove uncorrelated hits
 - > using Window Slicer
 - with increased time window of 10 µs

Event 481628 – Monopole Slices

Offline reconstruction algorithm → Monopole track

- remove slices with ΣE > 2×10⁶
 ADC
- identify straight line objects
 - Using standard NOvA tool
- > merge 2D tracks into 3D tracks
 - only keep tracks with at least 100 hits
 - sort tracks from slowest to fastest (i.e. first track = slowest track)

Event 481628 - Monopole Tracks

Linear Regression coefficient

- Histograms of linear regression coefficient (black: 10% data, MC: red) for:
- r²_{xt}: calculated from xt-hits (left)
- r²_{vt}: calculated from yt-hits (left)
- > r_{min}^2 : minimum of the above two for each event (right)
- > We require $r_{min}^2 > 0.95$

30 November 2017

Time Gap Fraction

- Histograms of linear regression coefficient (black: 10% data, MC: red) for:
- f²_{xt}: calculated from xt-hits (left)
- f²_{vt}: calculated from yt-hits (left)
- > f²_{max}: maximum of the above two for each event (right)
- > We require $f_{max}^2 > 0.2$

30 November 2017