Current Progress in Fragment analysis in Argon data run 7

Lalyo Kovachev ${ }^{1,2}$, Vasilii Plotnikov ${ }^{1}$, Igor Rufanov ${ }^{1}$

1. VBLHEP Joint Intitute for Nuclear Research, Russia
2. IMech Bulgarian Academy of Sciences, Bulgaria

Outline

1) Selection criteria
2) Data - MC agreement
3) Reconstruction efficiency
4) Trigger efficiency
5) Cross sections and yields of protons, deuterons and tritons
6) m_{T} and y spectra of protons, deuterons and tritons and extracted inverse slope parameter for two centrality classes
7) Conclusions

BM@N Setup
 Run with argon beam (March 2018) (Ar+C, $\mathrm{Ar}+\mathrm{Al}, \mathrm{Ar}+\mathrm{Cu}, \mathrm{Ar}+\mathrm{Sn}, \mathrm{Ar}+\mathrm{Pb}$ at 3.2 A GeV)

Detectors used in the analysis: Beam detectors (1), Multiplicity Detectors, ST (3), GEM (4), CSC (6), TOF 400 (7), DCH (8), TOF 700 (9)

$(\mathrm{m} / \mathrm{q})^{2}$ spectra of positive particles produced in argon-nucleus interactions

Comparison between experimental data and MC

Selection Criteria for experimental data and MC

Number of hits in 6 GEM per track > 3
Tracks from PV: -3.4 < ZPV - Z0 < 1.7 cm
Momentum range of tracks for ToF-400 (ToF-700):
p>0.5 (0.7) GeV/c
Distance from a track to PV in the X-Y plane: dca<1 cm
Distance of extrapolated tracks to CSC (DCH) and ToF400 (ToF-700): $|r e s i d X, Y|<3 \sigma$ of hit-track residual distribution

Reconstruction Efficiency for protons for TOF400 and TOF700

Trigger Efficiency

The efficiency to get a trigger signal based on multiplicities of fired channels in the BD (SiMD) detectors $\varepsilon_{\text {trig }}$ was calculated for events with reconstructed protons and deuterons using experimental event samples recorded with an independent trigger based on the SiMD (BD) detectors:

$$
\varepsilon_{\text {trig }}(B D \geq m)=N(B D \geq m, S i M D \geq n) / N(S i M D \geq n),
$$

where m and n are the minimum number of fired channels in BD and SiMD varied in the range from 2 to 4. The dependences of the trigger efficiency on the track multiplicity in the primary event vertex and the X/Y vertex position were taken into account. The efficiency for the combined BD and SiMD triggers was calculated as a product of the BD and SiMD trigger efficiencies.

Cross sections and yields of p, d and t

The differential cross sections $d^{2} \sigma\left(y, p_{T}\right) / d y d p_{T}$ and yields $d^{2} N\left(y, p_{T}\right) / d y d p_{T}$ of \mathbf{p}, \mathbf{d} and \mathbf{t} production in $\mathrm{Ar}+\mathrm{C}, \mathrm{Al}, \mathrm{Cu}, \mathrm{Sn}, \mathrm{Pb}$ interactions are calculated in bins of $\left(\mathrm{y}, \mathrm{p}_{\mathrm{T}}\right)$ according to the formulae:

$$
\begin{gathered}
d^{2} \sigma(y, p T) / d y d p_{T}=\Sigma\left[d^{2} n\left(y, p_{T} N_{\text {tu }}\right) /\left(\varepsilon_{\text {ris }}\left(N_{t T}\right) d y d p_{T}\right)\right] * 1 /\left(L \varepsilon_{\text {rec }}\left(y, p_{T}\right)\right) \\
d^{2} N\left(y, p_{T}\right) / d y d p_{T}=d^{2} \sigma\left(y, p_{T}\right) / \sigma_{\text {iniel }}\left(d y d p_{T}\right)
\end{gathered}
$$

where the sum is performed over bins of the number of tracks in primary vertex $N_{t r}$, L is the luminosity,
n - the number of reconstructed \mathbf{p}, \mathbf{d}, or \mathbf{t} in intervals dy and dp_{T},
$\varepsilon_{\text {rec }}$ - the reconstruction efficiency of the \mathbf{p}, \mathbf{d}, or \mathbf{t},
$\varepsilon_{\text {trig }}$ the track-dependent trigger efficiency,
$\sigma_{\text {inel }}-$ the cross section for minimum bias inelastic $\mathrm{Ar}+\mathrm{A}$ interactions. The cross
sections for inelastic $\mathrm{Ar}+\mathrm{C}, \mathrm{Al}, \mathrm{Cu}, \mathrm{Sn}, \mathrm{Pb}$ interactions are taken from the predictions of the DCM-SMM model
The cross sections in (y, pT) bins are calculated as weighted averaged of the results obtained with ToF-400 and ToF-700 data taking into account the statistical and systematic uncertainties

Rapidity spectra for protons in different intervals on p_{T}, centrality $<40 \%$ for DCM-SMM and BM@N, Sn target

DCM-SMM reasonable describes the normalization and shape of the proton spectra

Rapidity spectra for protons in different intervals on p_{T}, centrality $\geq 40 \%$ for DCM-SMM and BM@N, Sn target

DCM-SMM reasonable describes the normalization and shape of the proton spectra

Rapidity spectra for deuterons in different intervals on p_{T}, centrality $<40 \%$ for DCM-SMM-original, DCM-SMM-normalized and BM@N, Sn target

DCM-SMM reasonable describes the shape of the deuteron spectra (see normalized DCM-SMM),
but underestimates much the normalization of the deuteron yields

Rapidity spectra for deuterons in different intervals on p_{T}, centrality $\geq 40 \%$ for DCM-SMM-original , DCM-SMM-normalized and BM@N, Sn target

DCM-SMM reasonable describes the shape of the deuteron spectra (see normalized DCM-SMM), but underestimates much the normalization of the deuteron yields

Rapidity spectra for tritons in different intervals on p_{T}, centrality<40\% for DCM-SMM-original, DCM-SMM-normalized and BM@N, Sn target

DCM-SMM reasonable describes the shape of the triton spectra (see normalized DCM-SMM), but underestimates much the normalization of the triton yields

Rapidity spectra for tritons in different intervals on p_{T}, centrality $\geq 40 \%$ for DCM-SMM-original , DCM-SMM-normalized and BM@N, Sn target

DCM-SMM reasonable describes the shape of the triton spectra (see normalized DCM-SMM), but underestimates much the normalization of the triton yields

Transverse mass m_{T} spectra of protons in different intervals on rapidity for Sn target, centrality $\mathbf{4 0 \%}$

where \boldsymbol{m} is mass of proton $\boldsymbol{m}_{T}=\sqrt{ }\left(\boldsymbol{m}^{2}+\boldsymbol{p}_{T}^{2}\right)$ is the transverse mass, C - normalization (free parameter), T_{0} - inverse slope (free parameter) $\mathbf{d} \mathbf{m}_{\mathrm{T}}$ and $d y$ corresponds to the measured m_{T} and ylab range

Transverse mass m_{T} spectra of protons
in different intervals on rapidity for Sn target, centrality $\geq 40 \%$

where \boldsymbol{m} is mass of proton $\boldsymbol{m}_{T}=\sqrt{ }\left(\boldsymbol{m}^{2}+\boldsymbol{p}_{T^{2}}\right)$ is the transverse mass, C - normalization (free parameter), T_{0} - inverse slope (free parameter) $\mathbf{d} \mathbf{m}_{T}$ and $d y$ corresponds to the measured m_{T} and ylab range

Transverse mass m_{T} spectra of deuterons

in different intervals on rapidity for Sn target, centrality<40\%

$1 / m_{T}{ }^{2} \cdot d^{2} N / d m_{T} d y=C \cdot \exp \left(-\left(m_{T}-m\right) / T_{0}\right)$
where \boldsymbol{m} is mass of deuteron $\boldsymbol{m}_{T}=\sqrt{ }\left(\boldsymbol{m}^{2}+\boldsymbol{p}_{T}{ }^{2}\right)$ is the transverse mass, C - normalization (free parameter),
\mathbf{T}_{0} - inverse slope (free parameter) $\mathbf{d} \mathbf{m}_{T}$ and $d y$ corresponds to the measured m_{T} and ylab range

Transverse mass m_{T} spectra of deuterons

in different intervals on rapidity for Sn target, centrality $\geq 40 \%$

$1 / m_{T}{ }^{2} \cdot d^{2} N / d m_{T} d y=C \cdot \exp \left(-\left(m_{T}-m\right) / T_{0}\right)$
where \boldsymbol{m} is mass of deuteron $\boldsymbol{m}_{T}=\sqrt{ }\left(\boldsymbol{m}^{2}+\boldsymbol{p}_{T}{ }^{2}\right)$ is the transverse mass, \mathbf{C} - normalization (free parameter),
\mathbf{T}_{0} - inverse slope (free parameter) $\mathbf{d} \mathbf{m}_{T}$ and $d y$ corresponds to the measured m_{T} and ylab range

Transverse mass m_{T} spectra of tritons in different intervals on rapidity for Sn target, centrality $<40 \%$

where \boldsymbol{m} is mass of deuteron $\boldsymbol{m}_{T}=\sqrt{ }\left(\boldsymbol{m}^{2}+\boldsymbol{p}_{T}{ }^{2}\right)$ is the transverse mass, \mathbf{C} - normalization (free parameter),
\mathbf{T}_{0} - inverse slope (free parameter) $\mathbf{d m} \mathbf{m}_{T}$ and $\mathbf{d y}$ corresponds to the measured m_{T} and ylab range

Transverse mass m_{T} spectra of tritons

in different intervals on rapidity for Sn target, centrality $\geq 40 \%$

$1 / m_{T}{ }^{2} \cdot d^{2} \mathrm{~N} / d m_{T} d y=C \cdot \exp \left(-\left(m_{T}-m\right) / T_{0}\right)$
where \boldsymbol{m} is mass of deuteron $\boldsymbol{m}_{T}=\sqrt{ }\left(\boldsymbol{m}^{2}+\boldsymbol{p}_{T}{ }^{2}\right)$ is the transverse mass, \mathbf{C} - normalization (free parameter),
T_{0} - inverse slope (free parameter) $\mathbf{d} \mathbf{m}_{\mathrm{T}}$ and $d y$ corresponds to the measured m_{T} and ylab range

Rapidity dependence of the inverse slope T0 for protons, deuterons and tritons,

 centrality<40\% for DCM-SMM and BM@N, Sn target

DCM-SMM describes the inverse slope of protons and deuterons in the forward rapidity range, but underestimates data by a factor 2 in the central rapidity range ($y_{C M}{ }^{\mathrm{NN}} \sim 1.08$)

Rapidity dependence of the inverse slope T0 for protons, deuterons and tritons,

 centrality $\geq 40 \%$ for DCM-SMM and BM@N, Sn target

DCM-SMM describes the inverse slope of protons, deuterons and tritons in the forward rapidity range, but underestimates data by a factor 2 in the central rapidity range $\left(y_{C M}{ }^{N N} \sim 1.08\right)$

Conclusions

Spectra of protons, deuterons and tritons are measured in bins of rapidity and transverse momentum (transverse mass)

Inverse slopes are extracted from fits of the transverse mass spectra of protons, deuterons and tritons

Data are compared with predictions of the DCM-SMM model
${ }^{3} \mathrm{He}$ and ${ }^{4} \mathrm{He}$ spectra will be analyzed in details on the next step

Thank you for your attention !

BACKUP

Reconstruction Efficiency

Trigger Efficiency

The following logic conditions were applied to generate the trigger signal: 1$) \mathrm{BT} \otimes(\mathrm{BD} \geq \mathrm{m})$; 2) $\mathrm{BT} \otimes(\mathrm{SiMD} \geq \mathrm{n}) ; 3) \mathrm{BT} \otimes(\mathrm{BD} \geq 2) \otimes(\mathrm{SiMD} \geq 3)$. The trigger conditions were varied to find the optimal ratio between the event rate and the trigger efficiency for each target. Condition 1 was applied for 60% of data collected with the carbon target. This trigger fraction was continuously reduced with the atomic weight of the target down to 26% for the Pb target. The fraction of data collected with trigger condition 2 was rising from 6% for the carbon target up to 34% for the Pb target. The rest of data were collected with trigger condition 3.

The systematic errors evaluated in the analysis cover the differences in the protons and deuterons signals obtained by using the mean values of the trigger efficiency values instead of the efficiency dependences on the number of vertex tracks and primary vertex position. The systematic errors also include the following checks made on limited statistics:

$$
\begin{aligned}
& \varepsilon_{\text {trig }}(B D \geq m)=N(B D \geq m, B T) / N(B T), \\
& \varepsilon_{\text {trig }}(S i M D \geq n)=N(S i M D \geq n, B T) / N(B T), \\
& \varepsilon_{\text {trig }}(B D \geq m \& \operatorname{SiMD} \geq n)=N(B D \geq m \& \operatorname{SiMD} \geq n) / N(B T) .
\end{aligned}
$$

where runs with only BT in online trigger are used.

Differential cross sections

$$
\begin{aligned}
& \text { BT } \\
& \text { where } \mathrm{L} \text { is the luminosity, } \mathrm{n}_{\pi, \mathrm{K}} \text { is the number of } \\
& \text { reconstructed } \pi^{+} \text {and } \mathrm{K}^{+} \text {mesons in intervals dy and } \\
& \mathrm{dp}_{\mathrm{T}}, \varepsilon_{\text {rec }} \text { is the efficiency of the } \pi^{+} \text {and } \mathrm{K}^{+} \text {meson } \\
& \text { reconstruction, } \varepsilon_{\text {trig }} \text { is the multiplicity trigger (} \mathrm{BD} \text {, } \\
& \text { SiMD) efficiency, } \varepsilon_{\text {вт }} \text { is the beam trigger efficiency, } \\
& \sigma_{\text {inel }} \text { is the cross section for the minimum bias } \\
& \text { inelastic argon-nucleus interactions. } \\
& d^{2} \sigma_{\pi, K}\left(y, p_{T}\right) / d y d p_{T}=n_{\pi, K}\left(y, p_{T}\right) /\left(\varepsilon_{r e c}\left(y, p_{T}\right)\left(\varepsilon_{\text {trig }} \varepsilon_{B T}\right)\left(L / \varepsilon_{B \Psi}\right) d y d p_{T}\right)= \\
& =n_{\pi, K}\left(y, p_{T}\right) /\left(\varepsilon_{\text {rec }}\left(y, p_{T}\right) \varepsilon_{\text {trig }} L d y d p_{T}\right), \\
& d^{2} N_{\pi, K}\left(y, p_{T}\right) / d y d p_{T}=d^{2} \sigma_{\pi, K}\left(y, p_{T}\right) /\left(\sigma_{\text {inel }} d y d p_{T}\right), \\
& \varepsilon_{\text {Fullirig }}=\varepsilon_{\text {trig }} \varepsilon_{B T}, L_{\text {full }}=\boldsymbol{L} / \varepsilon_{B T},
\end{aligned}
$$

$\varepsilon_{\mathrm{BT}}$ is cancelled in the numerator and denominator.
$\sigma_{\text {inel }}=\pi \boldsymbol{R}_{0}{ }^{2}\left(A_{P}{ }^{1 / 3}+A_{T}{ }^{1 / 3}\right)^{2}$, where $R_{0}=1.2 \mathrm{fm}$ is an effective nucleon radius, A_{p} and A_{T} are atomic numbers of the beam and target nucleus.

Interaction	$\boldsymbol{A r} \boldsymbol{r} \boldsymbol{C}$	$\boldsymbol{A r}+\boldsymbol{A l}$	$\boldsymbol{A r}+\boldsymbol{C u}$	$\boldsymbol{A r} \boldsymbol{\boldsymbol { l }} \boldsymbol{\operatorname { l n }}$	$\boldsymbol{A r} \boldsymbol{r} \boldsymbol{P b}$
$\sigma_{\text {inel }}, \mathrm{mb}$	1470 ± 50	1860 ± 50	2480 ± 50	3140 ± 50	3970 ± 50

Luminosity and fluxes

$\mathrm{L}=\mathrm{N}_{\mathrm{b}} \cdot \mathrm{N}_{\mathrm{A}} \cdot \rho \cdot l / \mathrm{A} \cdot$ corr $=\mathrm{N}_{\mathrm{b}} \cdot$ coeff
$\checkmark \mathrm{N}_{\mathrm{b}}$ - integrated ion flux through the target
$\checkmark \mathrm{N}_{\mathrm{A}}-$ Avogadro number
$\checkmark \rho \cdot l-$ target thickness (g/cm²)
\checkmark A - target atomic weight
\checkmark corr $=0.865 \pm 0.02-$ correction (see below)
\checkmark coeff - transformation coefficient
\checkmark To count the beam flux $\left(\mathrm{N}_{\mathrm{b}}\right)$ we use BT
$\checkmark \mathrm{BT}=\mathrm{BC} 1 \otimes \mathrm{VC} \otimes \mathrm{BC} 2$
\checkmark Beam halo, pile-up suppression within the readout time window, number of signals in the start detector: $\mathrm{BC} 1=1$, number of signals in the beam counter: $B C 2=1$, number of signals in the veto counter around the beam: $\mathrm{VC}=0$;
\checkmark Beam flux for active (not busy) time of DAQ was integrated spill by spill for each target (C, Al, Cu, Sn, Pb)

Systematic errors

The systematic error of the protons and deuterons and tritons yields in every pT and y bin is calculated as a root square of quadratic sum of uncertainties coming from the following sources: Sys1: systematic errors of the reconstruction efficiency due to the remaining difference in the X/Y primary vertex distribution in the simulation relative to the experimental data.
Sys2: systematic errors of the background subtraction under the protons and deuterons signals in the mass squared spectra of identified particles.
Sys3: systematic error of the trigger efficiency evaluated as a function of the number of tracks from the primary vertex and the X/Y primary vertex position

The protons and deuterons yield normalization uncertainties are calculated for the whole measured (y, pT) range as a quadratic sum of the statistical uncertainty of the trigger efficiency, uncertainties of the tracking detector efficiency, efficiency of the track matching to the CSC (DCH) outer detectors and to ToF-400 (ToF-700), uncertainties of the luminosity and inelastic nucleusnucleus cross section

Truncated mean dE/dx for 3, 4, 5 and 6 hits tracks

Slices in energy loss in $\beta \gamma-$ distributions are fit and the the median value from the fit is used for normalisation
deff = sqrt[eff*(1-eff)/N(denominator)], where eff $=\mathrm{N}($ numerator $) / \mathrm{N}$ (denominator this is the formula obtained from the variance of the binomial distribution

Normalised dE/dx for d/4 He tracks (TOF-700 $\left.2.5<\operatorname{m}^{2}<4.5\left(\mathrm{GeV} / \mathrm{c}^{2}\right)^{2}\right)$

Using $\beta \gamma$ allows us to analyze energy losses independently of particle type Unit of $\mathrm{dE} / \mathrm{dx}$ is a median value for deuterons.

