Simulation, reconstruction and analysis in Xe run

Sergei Merts

on behalf of BERDS Group

12/09/23

Update in FSD simulation

D.Baranov

- Realistic effects added in simulation.
- Track inclination is taken into account now.
- Previous version used only coordinate smoothing.

- There is difference between Exp and MC cases
- 1-strip clusters should be analized more detailed

S. Merts

Analysis meeting 12/09/23

- Residuals became 3-4 times wider
- Comparison with experimental data needed

S. Merts

Analysis meeting 12/09/23

Analysis of magnetic field map

S.Lebedeva, S.Merts

- Magnetic field map was created in the region of measurements
- To exclude inhomogeneity of created field map the smoothing procedure was done
- Smoothing was done as a moving average by three-point in each direction

- Blue basic inhomogeneous field
- Red smoothed field

S. Merts

NEXT STEPS:

- Analyze and fix magnetic field map in region of SP-41 poles
- Extrapolate field map to the region of TOF-400
- Make better smoothing of the field

Analysis of thresholds in LCSC decoding

S.Lebedeva

Algorithm:

- \bigcirc Basic threshold was set around 0
- All digits with signal less than current threshold were eliminated in reconstruction
- Hits in LCSC were reconstructed
- Tracks from inner tracker were extrapolated to LCSC planes
- All hits to all tracks residuals were created and fitted by Gaus + Pol2 function
- Signal (S) and background (B) were extracted

NEXT STEPS:

- Analyze thresholds on higher statistics
- Analyze thresholds for different zones of LCSC (different zones = different chips)
- Apply this procedure for other detectors

Global Tracking status

P.Alekseev, S.Merts

- TOF-700 was aligned by modules (60 indepedent planes)
- LCSC was aligned by modules (8 indepedent planes)
- ScWall was aligned as a whole
- Aligment of TOF-400 is under preparation

BM@N

Far CSC modules X residuals alignment

Far CSC modules Y residuals alignment

Detector	Is in Global Track	Alignment	Local Reco	Comment
Inner Tracker	1	1	1	Core of global track
sCSC	×	×	✓	
LCSC	1	1	1	Not in current mass production
TOF-400	1	√X	√X	Alignment and corrections to proton peak needed
TOF-700	1	1	√X	Corrections to proton peak needed
DCH	×	×	√X	There are problems with Xe multiplicity
ScWall	1	1	1	
FHCal	×	×	1	

- In current mass production Global track = FSD + GEM + TOF400 + TOF700 + SCWall
- LCSC added into Global Track after mass production started
- More detailed alignment for TOF400 needed

Analysis of the inner tracker efficiency

INPUT DATA:

- 25k experimental events (run 8000)
- Number of tracks in vertex: 2+
- Vertex cut: $|X_{vrt} X_{trg}| < 5$ cm, $|Y_{vrt} Y_{trg}| < 5$ cm, $|Z_{vrt} Z_{trg}| < 5$ cm
- Hits on track cut: 2FSD + 4GEM
- Range for hits on track: FSD: dx = 0.12 cm, dy = 1.20 cm GEM: dx = 0.30 cm, dy = 1.20 cm

S. Merts

Analysis meeting 12/09/23

24 / 41

Station number	0	1	2	3	4	5	6	7	8	9	10
2FSD + 4GEM	81.1	85.9	95.2	86.0	83.6	81.4	78.8	70.6	61.9	50.6	51.8
3FSD + 4GEM	87.6	98.0	89.5	82.4	91.2	85.2	77.3	65.9	56.6	47.7	46.2
3FSD + 5GEM	85.9	98.2	90.3	84.5	90.8	84.5	76.7	66.5	59.7	49.3	47.5
3FSD + 6GEM	84.8	98.6	92.6	86.3	87.8	82.1	74.5	63.5	58.2	50.5	47.4

- Efficiency is depended on both the tracking algorithm and the detector conditions (like gas flow direction)
- More detailed analysis neede for this complicated task
- For different cuts tables presented in back up slides

Feasibility study of $\Lambda\text{-hyperon}$ production

R.Barak

INPUT DATA:

- 100k Xe+Csl @ 3.8 AGeV events (generator DCMSMM)
- All active/passive volumes added (like BD, target, beam pipe)
- Realistic coordinate and angle beam smoothing added

30 / 41

NEXT STEPS:

- Extract signals for PtY bins
- ${\ensuremath{\, \bullet }}$ Estimate the efficiency of $\Lambda\mbox{-hyperon}$ reconstruction
- Work with experimental data

Analysis of fragment production in Xe run

I.Kozlov

INPUT DATA:

- 30m experimental events
- Number of tracks in vertex: 2+
- Vertex cut: $|X_{vrt} X_{trg}| < 5$ cm, $|Y_{vrt} Y_{trg}| < 5$ cm, $|Z_{vrt} Z_{trg}| < 5$ cm
- Hits number cut: 6+

NEXT STEPS:

- Signal extraction for 2D PtY bins
- Better track selection (after LCSC hits added and TOF-700 calibration finished)
- MC vs experimental data comparison and efficiency estimation
- Trigger efficiency estimation

Thank you

Back up

Efficiency of FSD-0

Upper modules

Module number	0	1	2
2FSD + 4GEM	85.0	75.4	78.2
3FSD + 4GEM	92.3	79.6	84.0
3FSD + 5GEM	91.7	72.4	84.1
3FSD + 6GEM	91.2	65.7	84.5

Lower modules

Module number	3	4	5
2FSD + 4GEM	90.7	77.7	84.4
3FSD + 4GEM	98.8	98.5	91.8
3FSD + 5GEM	98.6	97.8	92.3
3FSD + 6GEM	98.6	97.1	92.7

Efficiency of FSD-1 Upper modules

Module number	0	1	2	3	4	
2FSD + 4GEM	92.3	89.9	74.7	84.1	91.0	
3FSD + 4GEM	98.1	99.5	97.7	96.3	97.6	
3FSD + 5GEM	98.4	99.3	97.9	97.1	97.4	
3FSD + 6GEM	97.8	99.5	98.0	98.5	98.2	
Lower modules						
Module number	5	6	7	8	9	
2FSD + 4GEM	93.9	92.8	91.2	85.5	83.1	_
3FSD + 4GEM	100.0	100.0	99.5	99.5	92.3	
3FSD + 5GEM	100.0	100.0	100.0	99.9	92.0	
3FSD + 6GEM	100.0	100.0	100.0	100.0	91.2	_

Efficiency of FSD-2 Upper modules

Module number	0	1	2	3	4	5	6
2FSD + 4GEM	90.9	96.7	96.6	98.3	95.4	97.5	73.0
3FSD + 4GEM	53.3	93.8	94.6	92.6	93.6	96.7	37.1
3FSD + 5GEM	51.4	94.2	94.4	96.7	94.3	97.4	37.5
3FSD + 6GEM	55.2	95.1	94.1	99.0	97.2	97.6	40.8

Lower modules

Module number	7	8	9	10	11	12	13
2FSD + 4GEM	98.9	74.0	97.4	98.5	94.7	90.4	65.4
3FSD + 4GEM	98.6	49.5	90.8	93.3	90.2	86.6	29.6
3FSD + 5GEM	98.1	53.2	90.7	87.8	91.8	89.4	33.9
3FSD + 6GEM	97.6	61.9	96.0	75.0	98.0	91.9	42.3

Efficiency of FSD-3 Upper modules

Module number	0	1	2	3	4	5		6	7	′	8
2FSD + 4GEM	6.1	40.6	83.9	81.8	89.6	87.4		90.4	86	.2	91.5
3FSD + 4GEM	0.0	13.6	80.3	88.8	83.7	84.4		90.1	78	.1	57.1
3FSD + 5GEM	0.0	8.2	81.3	91.7	81.2	86.1		91.2	81	.7	50.0
3FSD + 6GEM	0.0	9.2	84.9	93.1	83.7	86.7		92.4	82	.9	50.0
Lower modules											
Module number	9	10	11	12	13	1	4	15		16	17
2FSD + 4GEM	90.1	95.6	86.9	90.6	92.0) 8	5.5	91.3		78.4	31.0
3FSD + 4GEM	100.0	94.0	84.1	93.3	77.8	3 8	7.3	92.1		67.7	0.0
3FSD + 5GEM	100.0	95.1	83.0	92.0	92.4	4 8	9.4	92.4	ł	69.7	0.0
3FSD + 6GEM	100.0	96.1	83.9	92.5	100.	0 94	4.0	93.3	3	71.7	0.0

Efficiency of GEM-0

Module number	0	1	2	3
2FSD + 4GEM	78.9	76.9	90.5	91.5
3FSD + 4GEM	91.9	90.0	92.4	91.5
3FSD + 5GEM	91.2	90.0	91.8	91.2
3FSD + 6GEM	87.7	87.6	88.5	88.1

Efficiency of GEM-1

Module number	0	1	2	3
2FSD + 4GEM	83.7	85.6	76.2	78.2
3FSD + 4GEM	88.2	87.3	82.3	80.0
3FSD + 5GEM	87.9	86.7	80.1	78.5
3FSD + 6GEM	85.8	84.5	75.5	75.0

Efficiency of GEM-2

Module number	0	1	2	3
2FSD + 4GEM	81.6	80.4	76.9	75.8
3FSD + 4GEM	82.2	76.1	76.0	73.6
3FSD + 5GEM	82.4	76.0	73.3	72.1
3FSD + 6GEM	81.3	74.9	66.9	68.8

Efficiency of GEM-3

Module number	0	1	2	3
2FSD + 4GEM	72.4	73.5	69.6	65.9
3FSD + 4GEM	69.8	67.1	63.9	60.4
3FSD + 5GEM	71.7	67.1	63.2	59.7
3FSD + 6GEM	70.0	64.4	57.3	55.5

Efficiency of GEM-4

Module number	0	1	2	3
2FSD + 4GEM	62.5	66.2	60.0	57.6
3FSD + 4GEM	59.8	58.6	54.5	50.5
3FSD + 5GEM	63.9	60.7	56.5	53.5
3FSD + 6GEM	63.7	59.9	49.8	51.0

Efficiency of GEM-5

Module number	0	1	2	3
2FSD + 4GEM	55.6	59.0	39.8	45.0
3FSD + 4GEM	52.3	50.7	41.1	40.4
3FSD + 5GEM	54.6	52.7	41.3	40.7
3FSD + 6GEM	56.3	54.0	39.6	40.9

Efficiency of GEM-6

Module number	0	1	2	3
2FSD + 4GEM	55.5	59.5	45.4	45.1
3FSD + 4GEM	49.6	49.9	42.1	38.3
3FSD + 5GEM	51.6	51.5	42.2	38.6
3FSD + 6GEM	51.1	50.9	39.7	38.7