Energy Calibration updates -Dhanurdhar Bajpai (UA)

- •Used all Oct Ba data in this study
- •Improved the fit function of Ba muonic X-rays by replacing peak fit function earlier described by Gaussian to Voigt function
- •Voigt describes the natural broadening of the muonic X-ray peaks arising due to uncertainty in lifetime of these peaks
- The component for natural broadening in ROOT's Voigt function is Iq = 2*v (v = natural spread)
- $Ig = 2*\gamma$ ($\gamma = natural spread$)
- The natural broadening for the peaks in consideration (~ 4 MeV) are of the order of 0.23 keV
- •Using an iterative approach, first obtained the calibration parameters of the detector which give an estimate of Ig in a.u.
- •Next, fixed the lg value in the fitting function

Double_t TMath::Voigt	(Double_t	xx,
	Double_t	sigma,
	Double_t	lg,
	Int_t	r = 4
)	

Ba-136 3924.3 keV fit

Ba-136 3990.0 keV fit

TI-208 2614.51 keV fit

Energy calibration

- We obtained true Ba K-shell muonic X-rays using mudirac code and found a discrepancy of ~1.1 keV with Schopper data
- Earlier we used an error of 0.2 keV for true Ba energies but here we compare the calibration constants taking two different errors (0.2 keV-small and 1.1 keV-large)
- Calibration constants are also compared by taking Gaussian/Voigt peak functions

Comparison of residuals in Ch 1 (Detector 2)

	Ener	gy calibration	Residuals			Energy calibration			Residuals		1
Channel 1 Fit function y = a+b*x		$\mathbf{E} = \mathbf{E} \cdot (\mathbf{k} \mathbf{a}) \mathbf{l}$	RSqS	Red χ^2	Fit function y = a+b*x+c*x^2				RSqS	Red χ^2	
	a (keV)	b (keV/a.u.)	Etrue - Efit (Kev)			a (keV)	b (keV/a.u.)	c (keV/a.u.^2)	<u>Etrue - Efit</u> (Kev)		~
Voigt											
1(0.2 err)	0.29±0.01	0.219065 ± 0.000003	(-0.24)- (0.36)	0.52	26.2	0.20±0.02	0.21914 ± 0.00001	-6.1(±0.8)e-9	(-0.2)- (0.9)	1.78	22.6
1(1.1 err)	0.30 ± 0.01	0.219064 ± 0.000004	(-0.22)- (0.37)	0.54	26.1	0.14±0.02	0.21919 ± 0.00001	-1.1(±0.1)e-8	(-0.2)- (1.7)	5.55	16.7
Gaussian											
1(0.2 err)	0.29±0.01	0.219065 ± 0.000003	(-0.24)- (0.36)	0.52	26.2	0.19±0.02	0.21914 ± 0.00001	-6.2(±0.8)e-9	(-0.2)- (0.9)	1.78	22.5
1(1.1 err)	0.30 ± 0.01	0.219064 ± 0.000004	(-0.22)- (0.37)	0.53	26.1	0.14±0.02	0.21919 ± 0.00001	-10.9(±0.9)e-9	(-0.2)- (1.7)	5.46	16.6

No difference in in preferred calibration constants using small or large errors on true Ba energies

No difference in residuals on using V/G fit function to describe the peak

There is a difference in residuals on using lin/quad calibration functions

Comparison of residuals in Ch 3 (Detector 2)

Channel 3	Energy calibration		Residuals	Residuals E E (ko)() RSgS	Red χ^2	Energy calibration			Residuals	RSqS	Red χ^2
	Fit function y = a+b*x		$\mathbf{E} = \mathbf{E} \cdot (\mathbf{k} \mathbf{o}) $			Fit function y = a+b*x+c*x^2			$E_{\rm res} = E_{\rm r} (k_0) (l)$		
	a (keV)	b (keV/a.u.)	Etrue - Efit (Kev)			a (keV)	b (keV/a.u.)	c (keV/a.u.^2)	Etrue - Efit (Kev)		~
Voigt											
1(0.2 err)	0.000±0.002	0.42692 ± 0.00001	(-1.0)- (0.8)	4.25	34.9	0.000 ± 0.001	0.42696 ± 0.00002	-0.9(±0.4)e-8	(-0.92)- (0.8)	2.99	37.9
1(1.1 err)	0.000 ± 0.001	0.42694 ± 0.00001	(-1.2)- (0.7)	5.24	33.6	0.000 ± 0.002	0.42691 ± 0.00003	1.1(±0.7)e-8	(-1.9)- (0.7)	9.12	36.8
Gaussian											
1(0.2 err)	0.000±0.002	0.42692 ± 0.00001	(-1.0)- (0.8)	4.13	34.9	0.000 ± 0.001	0.42696 ± 0.00002	-0.9(±0.4)e-8	(-0.92)- (0.8)	2.89	37.9
1(1.1 err)	0.000 ± 0.001	0.42694 ± 0.00001	(-1.2)- (0.7)	4.96	33.6	0.000 ± 0.002	0.42691 ± 0.00003	1.1(±0.7)e-8	(-1.9)- (0.7)	8.76	36.7

- There is a difference in preferred calibration constants using small or large errors on true Ba energies
- Using small errors prefer quadratic calibration and large errors prefer linear one
- No difference in residuals on using V/G fit function to describe the peak

Outline and next steps

- Voigt peak function gives better reduced χ^2 compared to Gaussian peak function
- Introduced TI-208 peak in the calibration set
- Calibration constants give smaller residual range depending on the error (small/large) we use for the true Ba muonic X-rays and the channel in consideration
- Continuing to produce my own files for time stability study of Ch 1
- Question:
 - Are we fixed to use large errors on true Ba lines?
 - Are the right tails fitted with Voigt actually from lifetime of the peak and not something else