On η_c study in resonance decays

20.06.2023

A.N.Skachkova (DNLP JINR)

Anna.Skachkova@cern.ch, annask@jinr.ru

η_c - production is the "golden probe for proton structure"

(see talk M.A.Nefedov, V.A. Saleev, A.V. Karpishkov 28.10.2020)

For better background suppression, η_c decays in **resonant channels** can be considered, which can potentially give a better signal isolation (with respect to the $\gamma\gamma$ and hadronic channels) due to the **finite width** of the corresponding resonances

In this talk I will consider the case of η_c (1S) $\rightarrow \phi \phi \rightarrow 2$ (K⁺K⁻)

The same way, for example, η_c (1S) $\rightarrow \rho \rho \rightarrow 2$ ($\pi^+\pi^-$) can be considered. ~40 times higher total branching, but ~5 times higher ρ width (150 MeV) compared to φ (32 MeV)

The main PDG parameters

- η_c (1S) Mass = 2983.9 ± 0.4 MeV ~ 2.984 GeV
- η_c (1S) Width = 32.0 ± 0.7 MeV ~ 0.032 GeV
- Branching $\eta_c \rightarrow \gamma \gamma = (1.68 \pm 0.12) \times 10^{-4}$
- Branching $\eta_c \rightarrow \phi \phi = (1.58 \pm 0.19) \times 10^{-3}$!
- φ (1020) Mass = 1019.461 ± 0.016 MeV ~1.019 GeV
- *φ* (1020) Width = 4.249 ± 0.013 MeV ~ 0.00425 GeV
- Branching $\boldsymbol{\varphi}$ (1020) $\rightarrow K^+K^- = (49.1 \pm 0.5) \%$
- Thus Branching $\boldsymbol{\varphi} \boldsymbol{\varphi} \rightarrow \boldsymbol{2} (\boldsymbol{K}^+ \boldsymbol{K}^-) = 24.1 \%$
- Total Branching $\eta_c \rightarrow \phi \phi \rightarrow 2 (K^+K^-) = 3,8090798 \times 10^{-4}$

The Study is focused on possibility of background separation

- Pythia 8.309 (p + p, $\sqrt{s} = 27$ GeV). The main background minimum-bias (SoftQCD:nonDiffractive)
- Channels of interest:

4

 $\mathbf{g} \mathbf{g} \rightarrow \boldsymbol{\eta}_c + \boldsymbol{g}$ (cross-section from PYTHIA8 $\boldsymbol{\sigma}_{\eta_c + g} = 416 \text{ nb}) - only this channel is considered$

for the moment in this talk

 $\mathbf{g} \mathbf{g} \rightarrow \mathbf{\eta}_{c}$ (cross-section from PYTHIA8 $\sigma_{nc} = 2230 \text{ nb}$) - 5.36 times higher

Formulae for η_c production in Pythia8 were taken as proposed by Anton Anufriev in his talk (11.04.23)

 $\mathbf{\eta}_{c}$ is forced to decay to $\boldsymbol{\varphi} \boldsymbol{\varphi}$

Thus the final cross-section for

 $g g \rightarrow \eta_c + g \rightarrow \varphi \varphi + g \rightarrow 2 (K^+K^-) + g \qquad \sigma_{\eta c + g} = 159 \text{ nb } \rightarrow \sim 1.59 * 10^5 \text{ events/year}$

 $g g \rightarrow \eta_c \rightarrow \varphi \phi \rightarrow 2 (K^+K^-) \quad \sigma_{nc} = \sim 2230 \text{ nb} \rightarrow \sim 8.52 * 10^5 \text{ events/year } (10^7 \text{ sec, Lum} = 10^{32} / cm^2 * \text{sec})$

Thus at the most in total ~ 1.1 * 10⁶ events/year

π^{\pm} / K[±] reconstruction

At P > 1.4 GeV we potentially can have problems with π^{\pm} / K^{\pm} misidentification. For the moment we have at $P_{K\pm} < 1.2$ GeV — 100% identification. At the region 1.2 GeV $< P_{K\pm} < 1.2$ GeV \sim 95% (see talks of Artem Ivanov of 6.10.2022 & 27.04.2023).

So at first approximation we considered the condition when all 4 signal K^{\pm} have $P_{K\pm} < 1.4 \text{ GeV}$

φ reconstruction

For $\boldsymbol{\phi}$ reconstruction we are looking for

K⁺K⁻ combinations (φ candidate)

in the region

 $0.92 < M_{inv} (K^+K^-) < 1.08 \text{ GeV}$

including Gauss smearing of 1.5% for Px, Py, Pz componenta

η_c reconstruction

A.N.Skachkova (DLNP, JINR) On η_c study in resonance decays 20. 06. 2023

7

Current results

The proposed selection criteria allowed to achieve **background suppression** (*initially 23.82 mb*) to the level of **1.76 * 10**⁻³ % that corresponds to S/B = 0.0798 for g g $\rightarrow \eta_c + g$ channel. So for g g $\rightarrow \eta_c$ channel we can expect S/B = ~ 0.4278

Thus in total for both channels we can expect S/B =~ 0.507

Next steps

- 9
 - To improve the algorithm to consider also the cases when we have $\geq 2 \text{ K}^+\text{K}^-$ pairs
 - Study production vertices of the background Kaons
 - To check the case P > 1.4 GeV and π^{\pm}/K^{\pm} misidentified combinations in this momenta region
 - To play with (to minimize) the spread of $M_{inv}\eta_c$ and $M_{inv}\phi$ determination
 - Repeat the calculations for $g g \rightarrow \eta_c$
 - To check η_c (1S) $\rightarrow \rho \rho \rightarrow 2 (\pi + \pi)$ channel

So there is still a plenty of room for S/B ratio improvement

Thank you for your attention!