Charged D Meson Reconstruction at SPD

Amaresh Datta (amaresh@jinr.ru)

DLNP Dubna, Russia

Jun 28, 2023

Amaresh Datta (amaresh@jinr.ru) (JINR) Charged D Meson Reconstruction at SPD

Jun 28, 2023 1 / 24

• = • •

- For neutral D, I did not try to suppress based on cuts of kinemattic variables to not introduce bias + to not lose very forward/backward candidates
- Only aplied cuts based on secondary vertex reconstruction i.e. decay length, χ^2 , DCA, opening angle of daughter tracks, collinearity angle of V0 etc.
- Same strategy for charged D mesons
- Some relevant numbers :
 - ${f 0}$ \sim 49% of open-charm events have at leat 1 D^0
 - 26% of open-charm events have at leat 1 D^+
 - **3** $D^0 \to \pi^+ K^-$ BR : 3.89%
 - **④** $D^+ \to \pi^+ \pi^+ K^-$ BR : 9.22%
- $\bullet \sim 25\%$ more D^+ may be detected

Updated Vertex Tracker

Figure 1: Previous configuration : MAPS barrel only

Figure 2: New configuration : MAPS barrel + endcaps

< ∃ ►

Gain in Far Forward/Backward Statistics

Figure 3: Reconstructed D^0 x-Feynman Figure 4: Reconstructed D^+ x-Feynman

above 0.2

Amaresh Datta (amaresh@jinr.ru) (JINR) Charged D Meson Reconstruction at SPD

above 0.2

▲ □ ▶ ▲ □ ▶ ▲ □

MC Simulation

- We'll look at comparisons of normalized distributions of our variables of interest of signal $(D^+ \rightarrow \pi^+ \pi^+ K^-)$ and background (random combinations from MinBias data)
- This time, we'll ALSO look at the statistical significance $S/\sqrt{S+B}$ of the variables
- First look with ideal conditions : no vertex smearing + perfect PID
- 4M Open-Charm events + decay channel enforced, 30M MinBias events (elastic process not included)

Decay Length and Its Accuracy : Comparison

Figure 5: Decay length and decay length divided by uncertainty. Green lines denote cuts.

Jun 28, 2023 6 / 24

< 回 > < 三 > < 三 >

Decay Length and Its Accuracy : Significance

Figure 6: Decay length and decay length divided by uncertainty. Green lines denote max Signal/ $\sqrt{Signal + Background}$.

Jun 28, 2023 7 / 24

• • = • •

Opening Angles : Comparison

Figure 7: Opening Angles Between Pairs of Daughter Tracks

t ► ◀ ≣ ► ঊ ∽ ९.० Jun 28, 2023 8/24

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Opening Angles : Significance

Figure 8: Opening Angles Between Pairs of Daughter Tracks

Jun 28, 2023 9 / 24

A (1) > A (2) > A

Reconstruction Variables 1 : Comparison

Figure 9: χ^2 and DCA of daughter tracks to PV and SV

Amaresh Datta (amaresh@jinr.ru) (JINR) Charged D Meson Reconstruction at SPD

Jun 28, 2023 10 / 24

Reconstruction Variables 1 : Significance

Figure 10: χ^2 and DCA of daughter tracks to PV and SV

Jun 28, 2023 11 / 24

Reconstruction Variables 2 : Comparison

Figure 11: χ^2 and DCA between daughter tracks

Amaresh Datta (amaresh@jinr.ru) (JINR) Charged D Meson Reconstruction at SPD

Jun 28, 2023 12 / 24

< ⊒ >

Reconstruction Variables 2 : Significance

Figure 12: χ^2 and DCA between daughter tracks

Jun 28, 2023 13 / 24

• • = • • =

Reconstruction Variables 3 : Comparison

Figure 13: Properties of V0 candidates

Amaresh Datta (amaresh@jinr.ru) (JINR) Charged D Meson Reconstruction at SPD

Jun 28, 2023 14 / 24

э

→ < Ξ →</p>

< 行

Reconstruction Variables 3 : Significance

Figure 14: Properties of V0 candidates

э

-

< (回) < (三) < (三) < (二) < (二) < (二) < (二) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-)

Cuts to Suppress MB Background

- Decay length : L > 0.02 cm, $L/\delta L > 2$.
- Collinearity angle : $\theta_{col} < 0.3$ rad
- V0 properties : $\chi^2_{V0-PV} > 0.5$, $DCA_{V0-PV} > 0.004$ cm
- Daughter track properties :
- DCA < 0.012 cm, opening angle $\theta_{OA} < 1.5$ rad, for all pairs of daughter tracks
- Daughter to PV : $\chi^2 > 2.5$, *DCA* > 0.012 cm for each daughter
- Daughter to V0 : *DCA* < 0.007 cm for each daughter
- Invariant mass window 1.7-2.0 GeV/ c^2
- $|x_F| > 0.2$ for asymmetry measurements

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Starting Point

Invariant Mass

Generated : 4 M open-charm events, 30 M MinBias events Detected : 127785 D^+ , 2.9054×10⁶ MB

Jun 28, 2023 17 / 24

After Background Suppression

Generated : 4 M open-charm events, 30 M MinBias events Detected $(-1 \le x_F \le 1 :)$: 657 D^+ , 1 MB

Jun 28, 2023 18 / 24

• • = • • =

Suppression Efficiency

- S/B = 657 (from generated MC event ratio $N_S/N_B = 2/15$)
- Accounting for proper D^+ BR (9.22%), S/B = 60.57
- Assuming 32.8 mb for MB (sans elastic) and 9.4 μb for open-charm, produced real data event ratio $N_S/N_B = \sigma_S/\sigma_B = 1/3489$
- Finally, expected S/B in real data : $\sim 1/7.7$
- for D^0 , S/B $\sim 1/8$
- Background counts after cut statistically not reliable yet. Requires a much larger sample

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Projection for One Year : D^+

Figure 15: Projected invariant mass plot Figure 16: Projected invariant mass plot for *produced* counts in 1 year of data. for *detected* counts (after background suppression cuts) in 1 year of data.

Jun 28, 2023 20 / 24

Outlook

- CDR gives 520 Million $D^+ \rightarrow \pi^+ \pi^+ K^-$ counts, my estimate gives 225 Million (I discussed similar over-estimate in CDR for the D^0 case)
- So far, results for charged D mesons are very similar to the case of neutral D mesons
- Need large MinBias data sample (some steps are being takes for the mass production) for statistically reliable background counts after cuts
- Had a conversation with Danila and Artem, gave sample scripts for event generations and reconstruction. Hope large scale production starts soon
- Next steps : refine cuts, use realistic PID and vertex smearing

Backup

Amaresh Datta (amaresh@jinr.ru) (JINR) Charged D Meson Reconstruction at SPD

Jun 28, 2023 22 / 24

3

< □ > < □ > < □ > < □ > < □ >

Kinematic Variables : 1

Amaresh Datta (amaresh@jinr.ru) (JINR) Charged D Meson Reconstruction at SPD

Jun 28, 2023 23 / 24

Kinematic Variables : 2

D0 : correl. Pt of K vs. pi

1.5

Amaresh Datta (amaresh@jinr.ru) (JINR) Charged D Meson R

Charged D Meson Reconstruction at SPD

Jun 28, 2023 24 / 24