On using leading hadron and clusters of charged particles to reconstruct parton kinematics

Seryubin Seraphim, DLNP JINR

From the final state to the hard process...

Purposes

1. For **proton-proton collisions** at the COM frame energy 27 GeV (the main energy of pp-interactions SPD@NICA) in events with large transverse momentum transfer (pT > 3 GeV/c), to study **the possibility of reconstruction** and **the quality of reconstruction** of the **kinematics** of a hard subprocess using:

- charged jets;
- leading hadrons.

2. Compare two approaches in the energy range from 10 to 200 GeV.

Methods and main points

- The parton kinematics reconstruction was studied by using gamma+1jet case (gluon-Compton scattering subprocess)
- The **PYTHIA 8** event generator was used to generate pp interactions
- The *kT*-algorithm of hadron sequential algorithms was used as the main algorithm for jet selection
- To obtain the main results, the pp collisions at energy 27 GeV was used, and for comparison, an energy range of 10 – 200 GeV was used

Event selection

Jet requirements:

- charged particles only
- *kT*-algorithm
- $p_T^{jet} > 1 \text{ GeV}/c$
- $p_T^{hadr} > 0.25~{\rm GeV}/c$
- $N_{ch}^{jet} \ge 2$ hadrons
- $R = \sqrt{\Delta \phi^2 + \Delta \eta^2} = 0.3$ (narrow jet)
- $R = \sqrt{\Delta \phi^2 + \Delta \eta^2} = 0.8$ (wide jet)
- $|\eta_{hadr}| < 2.44$ (acceptance)

Leading hadron requirements:

 $p_T > 1 \text{ GeV}/c$ $|\eta| < 2.44$

Main characteristics

Event example

Comparison criteria

• Efficiency of jet reconstruction and selection of the leading hadron

• The probability of the correct association of the jet and the leading hadron with the parton in a hard process

- Accuracy of parton angle reconstruction
- Accuracy of parton energy reconstruction

Efficiency of jet reconstruction and selection of the leading hadron

- the highest probability is to select the leading hadron (in events at an energy of 27 GeV);
- at low energies, it is much more efficient to use leading hadrons
- at high energies, the efficiency of the jets is about 100%

The probability of the correct association of the jet and the leading hadron with the parton in a hard process

The process of a quark produced in a hard process tracking from parton level to the hadron level based on generator information.

- at low energies, the probability that the leading hadron contains a quark of a hard process is comparable to jets;
- at high energies, the leading hadron is significantly less associated with a quark

Accuracy of parton angle reconstruction

The angle (in the azimuthal plane) between the direction of the parton momentum and:

- jet axis;
- the direction of the momentum of the leading hadron.

Uncertainty of the parton momentum direction reconstruction for leading hadrons and jets

Accuracy of parton energy reconstruction

The ratio of parton energy and:

- jet energies ("narrow cone" and "wide cone");
- energy of the leading hadron.

Relative uncertainty of the reconstruction of the parton energy for the leading hadron and jet.

Conclusions

For proton-proton collisions with an energy in the center of mass system 27 GeV in events with large transverse momentum transfer (pT > 3 GeV/c) the efficiency and accuracy of reconstruction the kinematics of a hard subprocess are studied using:

- charged jets
- leading hadrons.

It is shown that in the SPD experiment at a proton collision at 27 GeV:

- it is possible to reconstruct the kinematics of hard processes using only charged particles
- the accuracy of reconstruction the azimuthal angle of direction of the parton is 0.15 radians and the parton energy is about 30%
- using of leading hadrons and jets gives a similar accuracy in reconstructed angles and energies; at the same time, the reconstructed efficiency for leading hadrons is higher (by 6% for R = 0.8 and by 50% for R = 0.3).

Thank you for your attention

 $g(x,\mu)$ at $\mu = 2$ GeV

Х

		Creating infras	of polarized structure	Upgrade of polarized infrastructure							
	202	3 2026	2028	2030	2032						
		SPD co	nstruction 1 of c	SPD upg st stage operation	grade 2nd stage of operation						
Subsystem	Stage	Technology	Materials & components	Electronics	Subsystem	Stage	Main task	Active element	Weight, t	Power,	Channels,
MM-based Central Tracker	1				Range System (RS)	I+II	μ-ID	mini drift tubes	927	47	130.2
SI Vertex Detector					Electromagnetic	п	γ detection	Ar:CO ₂ 70 : 30 Pb/scintshashlyk	68	8	23
DSSD option	2				Calorimeter (ECal) Time-of-Flight	п	PID	RPC chambers	4	4	8.8
MAPS option	2				system (TOF)			C ₂ H ₂ F ₄ :C ₄ H ₁₀ :SF ₆ 90:5:5			
Straw Tracker	1.2				Aerogel Straw Tracker (ST)	II I+II	PID tracking, PID	aerogel straw tubes	0.1	0.5	0.3 30.5
ToF	1*.2				Silicon Vertex		6,	Ar:CO ₂ 70:30			
Aerogel	2	New group			Detector (SVD)	п	vartay tracking	Si pizala	< 0.1	22	12
FCAL	1* 2	5.000			– MAPS – DSSD	П	vertex, tracking	Si strips	< 0.1	2	107.5
Muon (Pange) System	1.2				Central Tracker (MCT		tracking	gas chambers Ar: C_4H_{10} ,	< 0.1		25.6
	1,2				Beam-Beam			90:10			
	1,2				Counter (BBC) – inner	I+II	polarimetry	MCP	≪ 0.1	≪1	0.1
ZDC	1,2				– outer	I+II	polarimetry, timing	scint.	0.1	0.5	0.3
Superconducting Magnet	1,2				Zero Degree	I+II	n, y	W/scint.	0.3	2	2
DAQ	1,2				Magnet	I+II	detection		20	23	
Computing	1,2				Support and transportation	I+II			80.3		
DCS	1,2				system	LII			40		
Support & moving system	1.2				Side platform (loaded)	I+II I+II			100		
	- ,_ 9										

https://indico.jinr.ru/event/3750/contributions/20851/attachments/15995/27440/5.%20SPD_NICA_TDR_PAC_JUNE_0.pdf

Эффективность

√s

Азимутальный угол между двумя векторами

Pythia settings

prompt photons

PromptPhoton:qg2qgamma = on PromptPhoton:qqbar2ggamma = on PDF:pSet = 15

BeamRemnants:primordialKThard = 1.2

PhaseSpace:mHatMin = 0. PhaseSpace:pTHatMin = 0.

Random:setSeed = on Random:seed = 0

minimum-bias

SoftQCD:all = on PDF:pSet = 15 BeamRemnants:primordialKT = on BeamRemnants:primordialKTsoft = 1.1 BeamRemnants:primordialKThard = 1.8 BeamRemnants:halfScaleForKT = 2.0 BeamRemnants:halfMassForKT = 4.0 BeamRemnants:reducedKTatHighY = 0.7 BeamRemnants:primordialKTremnant = 0.4 PhaseSpace:pTHatMinDiverge = 0.5

PhaseSpace:mHatMin = 0. PhaseSpace:pTHatMin = 0. Random:setSeed = on

2

Квантовая хромодинамика

