Design of large experimental facilities in heavy ion physics

… with focus on the MPD experiment at NICA …

V. Riabov

System evolution in heavy-ion collisions

Fireball is ~10-15 meters across and lives for 5x10-23 seconds

- The measurements are used to infer properties of the early state of relativistic heavy-ion collisions
- \bullet Only final state particles are measured in the detector: γ , e^{\pm} , μ^{\pm} , π^0 , π^{\pm} , K^0 , K^{\pm} , η , ω , p , \bar{p} , ϕ , Λ , Σ , Ξ , etc.

Particle detection

- Only particles that interact with the detector materials or decay in particles that interact can be detected
- I_n
 Independent as a * Four known fundamental forces: Gravity, Weak, Electromagnetic and Strong interactions:
	- **✓** pions, protons: strong, electromagnetic
	- \checkmark photons, electrons, muons: electromagnetic
- Particle decays:
	- \checkmark strong and electromagnetic decays $\hat{\to}$ very small lifetimes, $\sim 10^{-23}$ s $\hat{\to}$ decay daughters are undistinguishable from primaries: $\pi^0(\eta) \to \gamma \gamma$, $\omega(\eta) \to \pi^0 \gamma (\pi^0 \pi^+ \pi^-)$, $\rho \to \pi \pi$, $K^* \to \pi K$, $\phi \to KK$, etc.
	- \checkmark weak decays $\hat{\to}$ long lifetimes, $\sim 10^{-10}$ s $\hat{\to}$ secondary decay vertices can be separated: $K_s^0 \to \pi^0 \pi^0$, $K^{\pm} \to \mu \nu$, $\Lambda \to p \pi$, $\Sigma \to N \pi$, $\Omega \to \Lambda K$, etc.
- Detection of particles relies on the way particles (or daughters) interact with the materials:
	- \checkmark track reconstruction in magnetic spectrometers $\hat{\to}$ nondestructive method (particle remains): coordinates, momentum
	- \checkmark calorimetric measurement of particle energy $\hat{\to}$ destructive method (particle disappears): energy, coordinates
- Particle identification is an important ingredient of particle detection:
	- \checkmark species dependent ionization losses: dE/dx vs. momentum
	- \checkmark species dependent time of flight: Tof vs. momentum
	- \checkmark species dependent shape of electromagnetic showers in the calorimeter: showers started by γ , e^{\pm} and hadrons differ
	- \checkmark species dependent penetration depth: μ^{\pm} can traverse a much larger width of material compared to other charged particles
	- \checkmark species dependent threshold for Cherenkov/Transition radiation

Charged particle tracking

Magnetic field analysis

Charged particles are bended in the external magnetic field

- \div The bending angle is related to particle momentum as $p = q \cdot B \cdot R \to$ for a fixed field B and particle charge q, the momentum p is proportional to the radius of curvature R
- Magnetic analysis is possible only for relatively long-lived particles to travel a measurable distance
- In nuclear physics, the relation becomes p $[GeV/c] = 0.3 \cdot B[T] \cdot R[m] \rightarrow a$ track with $p = 1$ GeV/c has a bending radius of R =1 m at B = 3T (magnetic field at the earth's surface is $\sim 6.10^{-5}$ T)
- Strong magnetic field and precise particle tracking can provide high resolution momentum measurements for long-lived charged particles
- \leftrightarrow Typical momentum resolution: $\frac{\partial p}{\partial p} = \sqrt{c_1^2 + (c_2 p)^2} \rightarrow$ less material and more precise tracking

 $\delta p/p = c_1$ for multiple scattering $\delta p/p = c_2 p$ for position resolution

 Gaseous and semiconductor (not covered) detectors are most often used to reconstruct charged particle tracks in large active areas/volumes \rightarrow non-destructive measurements

Ionization and drift in gases

Charged particles produce ionization:

 W_I - average energy for creation of ion pair $N_{\rm T}$ - total number of electron-ion pairs per cm

- \cdot External electric field \rightarrow force movement of electrons and ions in the opposite directions:
- Electron drift velocity $v_e = f(P, T, E, mixture) \rightarrow by measuring drift time one can reconstruct a drift length \rightarrow coordinates of ionization area$
- Electron cloud diffuses as it drifts, diffusion $\sim \sqrt{L} \rightarrow$ dominates position resolution $\sim \sqrt{L} D_T / \sqrt{N}$
- \checkmark Ion drift velocity $v_i \le v_e$, linearly proportional to the electric field \hat{z} can distort electric field configuration at high multiplicities/rates
- Gas mixtures are optimized for ionization density, drift velocity and spatial resolution (noble gases + quenchers)

⁶V. Riabov @ NICA Workshop - Detectors

Gas amplification

- \cdot If E >> 1 then electrons gain enough energy in a mean free path (λ) to ionize the gas
- $\hat{\mathbf{v}} \cdot \alpha = 1/\lambda$ is the first Townsend coefficient
- **relativistic ↓** Gas amplification (avalanche): $N = N_0 \cdot e^{\alpha x}$ in uniform electric field

- \div Effective gas amplification starts at E > 20 kV/cm
- Large difference in threshold fields for entering the amplification regime for different gases
- \div Typical gas amplification in gaseous detectors $\sim 10^4$ to produce measurable signals

Charged particle tracker – Drift Chamber

- A long evolution of gaseous tracking detectors: Geiger-Muller counter \rightarrow Proportional counter \rightarrow (Multiwire) proportional chamber \rightarrow Drift chamber (DC) and Time Projection Chamber (TPC)
- \triangle Drift chamber of the PHENIX experiment at RHIC:

Wire potentials: $Uc = -4.5$ kV, $Ug = -1.6$ kV, $Ub = -2$ kV, Us - grounded Wire diameters: B, G, C \sim 100 µm, S \sim 25 µm

- \checkmark Large gas volume of a few m³ filled with specific gas mixtures to provide constant v_e and high GA: Ar-C₂H₆, 50%-50%
- \checkmark Wires of different types and thickness have different voltages applied to produce required electric field configuration
- \checkmark Charged particle produces electron-ion pairs along the path in the had mixture (Ar-C₂H₆, 50%-50%)
- Electrons drift towards the plane of sensitive (S) wires, $v_e \sim 50 \text{ }\mu\text{m/ns} \rightarrow 2 \text{ cm drift in } \sim 400 \text{ ns}$
- \checkmark Drifting electrons are amplified next to S-wires in strong electric field (E $\sim q/r$)
- \checkmark Measurable signal is detected on S-wires $\hat{\to}$ drift time from the ionization region, T_d
- \checkmark Drift time is converted to the drift distance, L = $v_e * T_d \to$ one point in space (efficiency ~100%, resolution ~120 μ m)
- \checkmark 10-20 points are measured along the path \to track reconstruction \to magnetic field analysis $\Rightarrow^{op/p} = \sqrt{(0.5\%)^2 + (1\%p)^2}$
- Double-track resolution ~ 1 cm

Gaseous trackers – Time Projection Chamber

❖ A typical Time Projection Chamber:

- \checkmark A large volume detector: $|\Delta \varphi|$ < 2π , L ~ 350 m, R_{i/o} ~ 30/150 cm
- \checkmark Uniform electric field is formed by the central membrane (~ 30 kV) and voltage dividers on the vessel walls / rods
- \checkmark Charged particle produces electron-ion pairs along the path
- \checkmark Electrons drift towards the side planes equipped with MWPC, $v_e \sim 50 \text{ }\mu\text{m/ns} \rightarrow 150 \text{ cm drift in } \sim 30 \text{ }\mu\text{s}$
- \checkmark Reconstructed points in the MWPC produce 2D projection of track
- \checkmark The measured drift time is converted to drift distance to add the third coordinate \rightarrow 3D points along the tracks
- \checkmark Up to 53 points are measured along the path \to track reconstruction \to magnetic field analysis \Rightarrow $\delta p/p = \sqrt{(1\%)^2 + (1\% \cdot p)^2}$

Double track resolution ~ 1 cm

Application area of gaseous trackers

- \bullet Gaseous detectors are well suited to track charged particles in large active volumes (\sim m³)
- \sim high spatial resolution (~ 100 μ m)
	- \checkmark low material budget $\hat{\to}$ minimize multiple scattering and photon conversion
	- \checkmark sample many points along the track (10-200) \Rightarrow $\delta p / p \sim 1 2\%$
	- \checkmark track hundreds and thousands of particles in a single event
	- \checkmark small number of read-out channels (\sim 10,000 100,000)
	- \checkmark relatively cheap
	- \checkmark PID by sampling particle dE/dx losses in the gas mixture

Bethe equation:

$$
\left\langle -\frac{dE}{dx} \right\rangle = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 W_{\text{max}}}{I^2} - \beta^2 - \frac{\delta(\beta \gamma)}{2} \right]
$$

- valid at $0.1 \leq \beta \leq 1000$ within a few percent
- z, β charge and velocity of incident particle
- Z, A atomic number and atomic mass of absorber
- W_{max} maximum passible energy transfer
- I mean excitation energy
- $\delta(\beta \gamma)$ density effect correction

Stopping power in a given material is a function of beta alone

Limitations:

- \checkmark relatively low event rate ~ 10-100 kHz
- \checkmark double track resolution of \sim 1 cm prevents effective tracking close to the event vertex
- \checkmark subject to ageing at high radiation loads

Further developments: Micro-Pattern Gas Detectors

- ◆ Position-sensitive detectors based on wire structures are limited by basic diffusion processes and space charge effects to localization accuracies of \sim 100 µm
- $\bullet\bullet\text{ MPGD}$ are developed to provide high rate capability (up to $10^6\,\text{Hz/mm}^2$) and excellent spatial resolution (down to 30 µm), large sensitive area and dynamic range and superior radiation hardness
- A broad family of MPGD technologies are being developed and optimized: Micro-Strip Gas Chamber (MSGC), Gas Electron Multiplier (GEM), Micro-Mesh Gaseous Structure (Micromegas), THick GEMs (THGEM), Resistive Plate WELL (RPWELL), GEM-derived architecture (µ-RWELL), Micro-Pixel Gas Chamber (µ-PIC), etc.

GEM (Gas Electron Multiplier) microMEGAS

Calorimetry

Calorimeters

- \triangle Measure particle full energy \rightarrow particle is absorbed \rightarrow destructive method
- \triangle Vary by purpose → hadronic (not covered) and electromagnetic calorimeters
- Construction details:
	- Absorb full particle energy and be compact \rightarrow materials with small radiation length (X_0) , $E = E_0 e^{-L/X0}$

Electromagnetic calorimeter depth: $15-30$ X_0 Hadronic calorimeter depth: 5-8 nuclear integration lengths

- \checkmark Not all absorbing material can provide signals $\hat{\to}$ possible solutions:
	- crystal calorimeters (CsI, PbGl, PbWO₄) \rightarrow best precision, very expensive
	- sampling calorimeters \rightarrow bricks of absorber (Pb) and read-out materials (Sc) via WLS fibers

Calorimeter energy/spatial resolution

• The energy resolution of a calorimeter can be parameterized using:

 \cdot Total signal is a sum of energies measured in several cells (towers) of the calorimeter \rightarrow signal coordinates are weighted average of the tower coordinates

- Spatial resolution is inversely proportional to the measured energy, $\delta x / x = \sqrt{c_1 + \frac{c_2}{E}}$ E
- At $E \rightarrow 0$, spatial resolution tends to a half-size of a single calorimeter cell

 \triangle Both energy and spatial resolutions degrade at large incident angles \rightarrow projective geometry is preferable

Shower shapes

Shape and size of the energy deposition region depends on the particle species and type of interaction

 \triangleleft Shape of the electromagnetic shower can be measured (e^{\pm} or photon beams) or simulated

 By comparing the measured and expected shower shapes one can discriminate between hadronic and electromagnetic showers \rightarrow particle identification / hadron suppression:

Chi2 = $\sum_{i} \frac{\left(E_i^{measured} - E_i^{expected}\right)^2}{\sigma_i^2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$, where: $E_i^{expected}$ is calculated for each tower based on the known shower shape, σ_i^2 is expected fluctuation of the energy distribution (empirical tuning), NDF – number of towers in the shower

 \checkmark shower shapes are different for $(\gamma, e^{\hat{\tau}})$ and hadrons

 \checkmark shower shape analysis is possible for showers with number of towers > 1

 \checkmark provides capabilities for rejection of hadronic signals in the measurements for γ and $e^{\pm} \rightarrow$ particle identification

Particle identification by velocity

Particle identification by time-of-flight (tof)

- Charged particle track is reconstructed in the tracking detector \rightarrow magnetic analysis \rightarrow momentum p
- Reconstructed track can be extrapolated to outer detector walls and matched to the measured hits
- Time of flight measurements are possible with fast detectors (MRPC, Micro channel plate detectors …)

Square of particle mass and the resolution are defined as:

$$
m^{2} = p^{2} \left(\frac{t^{2}c^{2}}{L^{2}} - 1 \right) \t\t \delta_{m^{2}}^{2} = 4m^{4} \frac{(\delta p)^{2}}{p^{2}} + 4p^{4} \frac{tc}{L} \frac{(\delta t)^{2}}{t} \t\t \rightarrow
$$
 depends both on momentum and tof resolution
2 second term is inversely proportional to flight path L

 \triangleq With momentum resolution of $\frac{\delta p}{n}$ $\frac{\partial P}{\partial p} \sim 1\%$ and $\delta t \sim 100$ ps charged hadrons are separated up to a few GeV/c

Complementary measurements

- Combined measurements of dE/dx and tof provide hadron separation in a wide momentum range:
	- \checkmark tracker provides PID signals for all reconstructed tracks, including those with momentum $\to 0$
	- \checkmark TOF walls located at larger radii do not detect low-momentum particles (bend in the magnetic field)
- Both measurements are based on particle separation by velocity
- \triangleleft Particle separation from ~zero up to ~ 3 GeV/c

Cherenkov detectors

- Used as a threshold detector for electron identification and/or hadron identification at high momenta
- Cherenkov light is emitted along the particle trajectory if it moves faster than c/n , n refraction index

$$
\cos(\theta_c) = \frac{1}{n\beta}
$$

- \checkmark Light emitted at constant angle θ_c along the particle path make a circle on the read-out plane \rightarrow Ring Imaging Cherenkov Detector (RICH)
- \checkmark Particle velocity β defines circle radius \Rightarrow separation up to tens of GeV/c

Mirror

Heavy ion collisions at NICA

Operation details

- \triangleleft Relatively low collision energies (4-11 GeV):
	- \checkmark modest multiplicity (~ 1000 particles per event) \rightarrow modest track density even close to event vertex
	- \checkmark bulk of particles is produced at low momentum ($\langle p_T \rangle \sim 100-300$ MeV/c for light-flavor hadrons) \rightarrow no need for a very strong magnetic field and high-momentum PID
	- \checkmark heavy flavor production cross section is small \rightarrow topic needs special attention
- \bullet Top NICA luminosity for heavy-ion beams is 10^{27} cm⁻¹s⁻¹:
	- \checkmark maximum event rate ~ 7 kHz
		- \rightarrow no need for very fast detectors

Multi-Purpose Detector

TPC: $|\Delta \varphi| < 2\pi$, $|\eta| \leq 1.6$ **TOF, EMC**: $|\Delta \varphi|$ < 2π , $|\eta|$ ≤ 1.4 **FFD**: $|\Delta \varphi|$ < 2π , 2.9 < $|\eta|$ < 3.3 **FHCAL**: $|\Delta \varphi|$ < 2π , $2 < |\eta|$ < 5

TPC: charged particle tracking + momentum measurements + identification by dE/dx **TOF:** charged particle identification by m^2/β **EMC**: energy and PID for γ/e^{\pm} + charged particle identification (limited ability) **FFD/FHCAL:** event triggering, event geometry, T_0 **ITS**: secondary vertex reconstruction for heavy-flavor decays (very small S/B ratio)

Charged particle tracking and PID

 \cdot Magnetic field ~ 0.5 T and up to 53 points measured along the track in the TPC:

 \cdot PID by dE/dx (resolution ~6.5%) and tof ($\delta t \sim 85$ ps) → excellent light flavor hadron and fragment identification capabilities in a wide rapidity range

²³ V. Riabov @ NICA Workshop - Detectors

Electron identification

- \div Electrons are produced at low rates, e/ $\pi \sim 10^{-3}$ -10⁻⁴
- Identification of electrons requires special treatment using capabilities of different detectors

- Each of the detectors provides more efficient electron identification in a limited range of momenta
- Combined use of the TPC-TOF-ECAL signals enhances the probability for a selected track to be true e^{\pm}

Electron efficiency and purity

- Simulated BiBi@9.2 GeV, realistic vertex distribution
- ❖ Selected tracks:
	- \checkmark hits > 39 \checkmark |n| < 1
- \checkmark 2 σ matching to TOF
- \checkmark 1-2 σ TPC-eID

 \checkmark $|DCA_x,y,z| < 3\sigma$

 $\sqrt{2} \sigma$ TOF-eID

• Purity of ~ 100% at 40% reconstruction efficiency can be achieved at $p_T > 150$ MeV/c

Measurement of photons

 $\bullet\bullet$ Photons can be measured in the ECAL or in the tracking system as e^+e^- conversion pairs (PCM):

- PCM disadvantages: ~4% of photons convert, ~ 1.5% of photons is reconstructed (vs. ~ 60% in ECAL)
- PCM advantages: superior energy resolution and photon purity

Reconstruction of neutral mesons

- Wide variety of neutral mesons:
	- \checkmark π^0 (π^0 → γγ) \checkmark η ($\eta \to \gamma \gamma, \eta \to \pi^0 \pi^+ \pi$) \checkmark K_s (K_s $\to \pi^0 \pi^0$) \checkmark **ο** (**o** → π^0 γ, **o** → π^0 π^+ π) \checkmark η ' (η ' $\to \eta \pi$ ⁺ π)
- Examples of π^0 reconstruction in the ECAL in two p_T intervals \rightarrow measurable signals from 100 MeV/c:

Summary

- Design of high energy heavy-ion experiments is driven by physics programs and accelerators
- For the MPD detector at NICA, well known detector technologies were selected to fulfill the requirements for the event rates and observables of interest at reasonable cost
- * Relatively 'simple' design of the MPD detector provides high flexibility and physics potential
- * The MPD detector is in final stage of production, commissioning and first data taking in 2025

BACKUP

Heavy-ion collisions

- \cdot Heavy-ion collisions are used to map the QCD phase diagram in different ranges of T and μ_B
- Probe conditions that existed during the first microseconds after the Big Bang or may exist in cores of compact neutron stars or in neutron star mergers

Calorimeter time resolution

- Intrinsic time resolution of calorimeters is $\sim \frac{100 \text{ ps}}{\sqrt{E [GeV]}}$ or better
- Experimental time resolution is driven by electronics performance, typical time resolution of modern calorimeters is $\sim \frac{500 \text{ ps}}{\sqrt{E [GeV]}}$
- Time-of-flight measurements with the calorimeters provide:
	- \checkmark modest PID capabilities for hadrons
	- \checkmark identification of photons, especially at low E where alternative PID techniques are not effective
		- photons travel along straight lines with speed of light \rightarrow minimum time of flight
		- charged hadrons travel along bended trajectories (longer path) and with velocities $<< c \rightarrow$ larger time of flight
		- the larger the distance from the event vertex the better is the separation between photons and hadrons in time of flight

Short-lived resonances

Resonances can not be directly detected \rightarrow reconstructed using hadronic decay channels

BiBi@9.2 GeV (UrQMD) after mixed-event background subtraction:

Phys.Scripta 96 (2021) 6, 064002

the resonance peaks in the invariant mass distributions using combined charged hadron identification in the TPC and TOF

 \checkmark decays with weakly decaying daughters require additional second vertex and topology cuts for reconstruction

Hyperon reconstruction

BiBi@9.2 GeV (UrQMD)

MPD has capabilities to measure production of charged π /K/p, (multi)strange baryons and resonances using charged hadron identification in the TPC&TOF and different decay topology selections

Reconstruction of hypertritons

BiBi@9.2 GeV (PHQMD), 40 M events \rightarrow full event/detector simulation and reconstruction

Phys.Part.Nucl.Lett. 19 (2022) 1, 46-53

