



# Applied research with heavy ion beams

### **Oleg Belov**

Veksler and Baldin Laboratory of High Energy Physics Joint Institute for Nuclear Research E-mail: oleg.belov@jinr.int

NICA Days 2023 2 – 3 October 2023, Belgrade, Serbia

## Outline

I. Basics on interaction of heavy ions with matter

II. Applied research with NICA ion beams

III. Sample activities and selected results

IV. Ways to be involved in the ARIADNA collaboration on applied research at NICA

## Natural and artificial sources of heavy ions



## **Space radiation**

## **Particle accelerators**





## **HEAVY IONS: INTERACTION WITH MATTER**

In many solids heavy ions release sufficient energy to induce permanently modified cylindrical zones, so-called ion tracks.

In biological matter heavy ions leave a trace of damage to biomolecules and induce a cascade of water and organic radiolytic specie production, which evolves with time.



Chemical evolution of 400 MeV/u carbon ion track in water in the time 1 ps to 1 µs (Baba, K., Kusumoto, T., Okada, S. *et al. Sci Rep* 11, 1524, 2021)



Y. Ngono-Ravache, M. Ferry, S. Esnouf, E. Balanzat. 2nd Int. Workshop Irradiation of Nuclear Materials: Flux and Dose Effects (2016)

## **STRUCTURE OF AN ION TRACK**



## HEAVY IONS: PATTERN OF ENERGY DEPOSITION TO A MATTER

#### lon beam characteristics :

 ✓ Energy deposited along the path in a reduced space
✓ High LET lon track = core + penumbra

Track: Heterogeneous Track core: more or less homogeneous

Heavy ions = High ionization/excitation densities Energy deposited through interactions between :

 $\checkmark$  the ions and target electrons

✓ the secondary electrons and the target electrons



### **DOSIMETRY WITH HEAVY ION BEAMS: BASICS AND MAIN PROBLEMS**

The conventional dosimetry operates mainly with macroscopic quantity being the **absorbed dose**.

The absorbed dose, D, is the quotient of  $d\overline{\varepsilon}$ by dm, where  $d\overline{\varepsilon}$  is the mean energy imparted by ionizing radiation to matter of mass dm, thus

$$D = \frac{\mathrm{d}\bar{\varepsilon}}{\mathrm{d}m} / \mathrm{ICRU \, Report \, No. \, 85/}$$

Unit: J kg<sup>-1</sup>

The special name for the unit of absorbed dose is gray (Gy).

The macroscopic dosimetry with heavy ions works nice in the case of solids but falls with small objects (biomolecules, living cells, microelectronic devices, etc.).



Form their very beginning, experiments with heavy ions and small targets like living cells and biomolecules have identified the problem of microdosimetry because of their stochastic nature of energy deposition.

### **FROM MACRODOSIMETRY TO MICRODOSIMETRY**

The early **target theories** attempted to describe the discrete acts of energy transfer, termed **"hits"** identifying them with individual ionizations or clusters of ions.

The spatial correlation of these events was not considered, and target theory in this earliest form could not explain the relative biological effectiveness of different types of ionizing radiation.

Three principles of the target theory:

- 1. The cell has an unique target smaller than the cell and sensitive to radiation.
- 2. Radiation energy is transferred to the cell in a discrete way.
- 3. Separate acts of energy deposition occur independently.







### **EVOLUTION OF CLASSICAL MODELS FOR CELL SURVIVAL**



- The parameters *m* and *n* do not have a real biophysical meaning.
- These parameters <u>vary</u> significantly under changes of some physical and biological factors.

### **STOCHASTIC MODELS**

Cells irradiated with the same dose have an equal probability of successful division (of survival). But as the cell division process is stochastic (depending on biological variability), cell survival is probabilistic.

Suggesting the equal number of initial lesions in cells, it is supposed that each lesion is caused by changes in the number of some cell structures. These changes lead to an increase in the failure probability during cell division.

 $-dN = S' N_0 dt$ 

*dN* is the number of surviving cells;

N<sub>0</sub> is the initial number of cells;

S'(t, D) is the failure probability during cell division in the t unit of time.

If the failure probability increases linearly with the irradiation dose  $S'(t, D) = S'_1(t)D$ 

$$V = N_0 e^{-D\int_0^\infty S_1'(t)dt}$$

Then an exponential curve can be obtained:

To take into account the **target theory,** a vector is introduced, which characterizes a cell population:  $\xi = (\xi_1, \xi_2, ..., \xi_n)$ . The initial state corresponds to  $\xi_0 = (1, 0, ..., 0)$ . Under the irradiation of the cell population  $\xi$  with the dose dD, this population transforms into a new state  $\xi + d\xi = \xi + A\xi dD$ , where A is a matrix of transition probabilities of the  $n \times n$  order. The solution of this equation is  $\xi = \xi_0 e^{AD}$ . The main problem with the dose dD is the dose dD is the main problem with the dose dD is the dD is the dose dD is the dD is t

If we suppose that cells in state n - 1 are able to repair the damage and in the state n they die, then the survival curve can be described as

$$S = \sum_{k=1}^{n-1} \xi_k.$$

The main problem with the stochastic models is the assumption on the same vulnerability of cells exposed to same dose.

### **PROBABILISTIC MODELS**

#### Probabilistic models combine the target theory and biological stochastics.

Let us put  $\alpha < 1$  which is the probability of a failure in cell division (the probability of cell death), and  $P_1 = 1 - \alpha$  is the probability of successful cell division (survival). Then, this probability for cells with *i* lesions will be

$$P_i = (1 - \alpha)^i$$

(based on the assumption that all lesions are independent on each other).

Cell survival is described as

$$S = \sum_{i=0}^{k} \frac{e^{-a} a^{i}}{i!} \left( 1 - \left( \frac{1 - (1 - \alpha)^{i}}{(1 - \alpha)^{i}} \right)^{2} \right)^{2}$$

Here **b** is the probability of lesion formation per unit dose;

*a* = *bD* is the average number of lesions;

k is the number of lesions when  $(1 - \alpha)^k > 0.5 \ge (1 - \alpha)^{k+1}$ .

The curves calculated using probabilistic models are superpositions of several multi-hit curves with the critical number of hits from 0 to *k*.



Probabilistic models can reconstruct different types of survival curves and explain some effects of irradiation. But they do not take into account the possibility of damage repair, which determines the different outcomes.

### **REPAIR MODELS**

The cell inactivation caused by radiation is connected with the repair process.

$$S = e^{-kD + \alpha \left(1 - e^{-\beta D}\right)}$$

*kD* is the number of cell lesions (proportional to the dose *D*);

 $\alpha$  (1 – e  $^{-\beta D}$ ) is the number of repaired lesions;

- $\alpha$  is the probability of a failure in cell division (probability of cell death);
- $\beta$  is the probability of damage repair per unit dose.

The repair models described the induction and elimination of lesions only formally and did not take into account real intracellular biophysical mechanisms.



#### Each target can be in two states

### **MOLECULAR MODELS**

Molecular models assumes a dependence of the cell survival on the position of radiation-induced damage at the DNA molecule.

The <u>lethal outcome</u> for the cell is the induction of a straight doublestrand DNA break or two overlapping single-strand DNA breaks.

$$S = e^{-\alpha D - \beta D^2}$$

 $\alpha$  is the probability of the induction of a straight double-strand break;

 $\beta$  is the probability of the induction of a double-strand break from two overlapping single-strand breaks.

$$S = e^{-N\beta D} \left( 1 - e^{-\frac{l_0\beta D}{M}} \right)$$

 $\beta$  is the yield of the initial DNA lesions;  $l_0$  is the size of a DNA gap; M is the genome size; N is the factor of the nearest non-simultaneous lesions in the opposite DNA strands.

Such curves have a small shoulder in the low-dose region and an exponential part at the high levels of irradiation.



Double-strand break produced by the enzymatic degradation of DNA

### **MODELS TAKING INTO ACCOUNT THE RADIATION QUALITY**

More realistic models were proposed through a more detailed description of the "random" configurations of energy deposition in the tracks of charged particles.

The term "Linear Energy Transfer" or LET was introduced to characterize how a particle loses energy along its track. The LET basically determines the radiation quality.



#### Linear energy transfer



The energy d*E* lost per unit length dx of particle track in the matter.

Unit: keV/µm

In microdosimetry one is interested in measuring or estimating the distribution of energy transfer along a particle's track.

Therefore the quantities used in microdosimetry are somewhat different than those used in conventional dosimetry. When a small sensitive target (i.e. cell nucleus) is exposed to heavy ions, the morphologically complicate structure is combined with a complicate pattern of energy deposition.

The best-known example is radiation damage to DNA.

Cell nucleus has a complicate morphology structure. Each chromosome occupies the exact chromosome territory.

DNA is very tightly folded, it is compacted in a way that allows it to easily become available to the many enzymes







Chromosome territories (nucleus). Measurements by Kirti Prakash (Rowitch lab)

# Nevertheless, pattern of energy deposition exhibited by heavy ions has some practical benefits.

- In radiation modification of materials: there is an option to induce precise radiation defects (latent tracks), which then can be transformed into the pores with different parameters.
- In radiation medicine, ion therapy demonstrates a more precise shape around the solid tumors than sparsely ionizing radiation and even more precise than proton therapy.



## Variety of pore shapes in track-etched membranes





Conical





Cylindrical, parallel, all tilted at an angle of 45°

D. Schulz-Ertner, H. Tsujii.

J.Clin. Oncol. 2001

Highly asymmetric with bullet-like tip

P. Apel. 2021. Applied Research @ NICA meeting

Cylindrical, non-parallel (typical commercial membrane for microfiltration)



Jiade J. Lu et al. IAEA Scientific Forum, 2017

II. Applied research with NICA ion beams



## **NICA FACILITIES FOR APPLIED RESEARCH**

#### The Applied Research Infrastructure for Advanced Developments at NICA fAcility (ARIADNA)





## **APPLIED RESEARCH @ NICA**



#### The Applied Research Infrastructure for Advanced Developments at NICA fAcility (ARIADNA) will include:

- (1) Beamlines with magnetic optics, power supplies, beam diagnostics systems, cooling systems, etc.
- (2) Experimental zones equipped with target stations for users (detectors, sample holders, irradiation control and monitoring system, etc.)
- (3) Supporting user infrastructure (areas for deployment of user's equipment, for sample preparation and post-irradiation express analyses, etc.)

| Low-energy ion beams | Intermediate-energy ion beams | High-energy ion beams  |
|----------------------|-------------------------------|------------------------|
| available at HILAC   | available at Nuclotron        | available at Nuclotron |
| 3.2 MeV/nucleon      | 150-1000 MeV/nucleon          | up to 4.5 GeV/nucleon  |

Life sciences, Radiation damage to microelectronics, Materials science, Novel relativistic nuclear technology

#### Protons and ions with Z = 2 to 92

Irradiation of decapsulated microcircuits and solid materials with 3.2 MeV/nucleon ions.

#### lons: <sup>12</sup>C<sup>6+</sup>, <sup>40</sup>Ar<sup>18+</sup>, <sup>56</sup>Fe<sup>26+</sup>, <sup>84</sup>Kr<sup>36+</sup>, <sup>131</sup>Xe<sup>54+</sup>, <sup>197</sup>Au<sup>79</sup>

Irradiation of capsulated microcircuits with 150-350 MeV/nucleon ions. Ions like <sup>197</sup>Au<sup>79+</sup> are decelerated in the capsule to 5-10 MeV/nucleon.

500-1000 MeV/nucleon ions be available at the target station for biological sample irradiation.

#### lons: <sup>1</sup>H<sup>1+</sup>, <sup>2</sup>D<sup>1+</sup>, <sup>12</sup>C<sup>6+</sup>, <sup>40</sup>Ar<sup>18+</sup>, <sup>7</sup>Li<sup>3+</sup>

Target station will be equipped with targets from C to Pb and with the systems of beam and target diagnostics, positioning, thermometry, synchronization, radiation control, and data acquisition.

### **ARIADNA** RESEARCH INFRASTRUCTURE:

### **CURRENT STATE AND RECENT DEVELOPMENTS**

The progress was recently made in development of the NICA target stations for applied research.

In December 2021, the beamline and **Station Of CHip Irradiation** (SOCHI) was completed.

Heavy Ion In December 2022, the prototype of the Target station for longterm exposure with high energy ions was assembled at the outgoing beam available behind the BM@N facility. This target station has an advantage to use beams for applied research purposes in parallel with operation of the BM@N setup.



Station Of CHip Irradiation (SOCHI)



BM@N (Detector)

Extracted beam

Ion source

LU-20

Linac

**IBO and ISCRA target stations** 



ARIADNA

## LOW-ENERGY TARGET STATION FOR TESTING OF DECAPSULATED

### **MICROELECTRONIC COMPONENTS**

Low-energy beams extracted from the HILAC at energy 3.2 MeV/n.

Protons and ions Z = 2 to 92.

The beamlines ands with a vacuum chamber designed for placement and online diagnostics of the microelectronic components' state.



Vacuum chamber

## **SOCHI** FACILITY: TEST EXPERIMENT WITH IRRADIATION OF **TRM-PTFE** FILMS

TP4-NTP 7 100 MKM





a 20 mar



Formula:  $(C_2F4)_n$ Density TRM-PTFE: 2.20 g/cm<sup>3</sup> Irradiation area at the film: 23 x 34 mm

#### EXPOSURE TO **3,2** MEV/NUCLEON <sup>124</sup>XE<sup>54+</sup> IONS

Irradiation in a vacuum chamber

TPM-TTS Duoy

Sample # 1 (20  $\mu$ m):  $\Phi$  = 1.08 x 10<sup>6</sup> particles/cm<sup>2</sup> Sample # 2 (20  $\mu$ m):  $\Phi$  = 1.12 x 10<sup>5</sup> particles/cm<sup>2</sup>

Sample # 3 (100  $\mu$ m):  $\Phi$  = 1.08 x 10<sup>6</sup> particles/cm<sup>2</sup>





# HIGH-ENERGY TARGET STATION FOR LONG-TERM EXPOSURE (AT THE BM@N FACILITY)

FIRST RUN OF THE TARGET STATION: 11 DECEMBER 2022 – 30 JANUARY 2023

#### FIRST HIGH-ENERGY BEAM FOR APPLIED RESEARCH AT NICA



### TARGET STATION FOR TESTING OF CAPSULATED MICROELECTRONIC COMPONENTS (ISCRA)

The beam diagnostic provides measurements of ion beam profiles, primary ion fluence, the primary ion density flux, the secondary particle density flux, the radiation dose: (three ionization chambers, scintillation-fiber detector, semiconductor detector, multi electrode cylinder Faraday, Si strip detector for individual ion detection, four on-line control scintillation detectors)





| Beam parameters                                                           |                                                                                                                                                                                                                |  |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| lon types                                                                 | <sup>12</sup> C <sup>6+</sup> , <sup>40</sup> Ar <sup>18+</sup> ,<br><sup>56</sup> Fe <sup>26+</sup> , <sup>84</sup> Kr <sup>36+</sup> ,<br><sup>131</sup> Xe <sup>54+</sup> , <sup>197</sup> Au <sup>79</sup> |  |
| lon energy, MeV/n                                                         | 150-350                                                                                                                                                                                                        |  |
| lon flux density,<br>particle/(cm <sup>2.</sup> s)                        | 10 <sup>2</sup> 1×10 <sup>5</sup>                                                                                                                                                                              |  |
| Fluence per session, ion/(cm <sup>2</sup> )                               | 107                                                                                                                                                                                                            |  |
| Area of chip<br>irradiation of 20×20<br>mm without scanning,<br>mm        | Ø <b>30</b>                                                                                                                                                                                                    |  |
| Flow uniformity at<br>chip irradiation of<br>20×20 mm without<br>scanning | 10%                                                                                                                                                                                                            |  |
| Exposure area in scan mode, mm                                            | 200×200                                                                                                                                                                                                        |  |
| Flux uniformity at scan irradiation                                       | ±15%                                                                                                                                                                                                           |  |
| FWHM beam diameter at target, mm                                          | 25-73                                                                                                                                                                                                          |  |
| Range of LET (Si)                                                         | 1…70<br>MeV∙cm²/mg                                                                                                                                                                                             |  |

E. Syresin et al.

## TARGET STATION FOR BIOLOGICAL OBJECTS (SIMBO)

#### **Beam parameters**



| lon types                                                                                           | <sup>12</sup> C <sup>6+</sup> , <sup>40</sup> Ar <sup>18+</sup> ,<br><sup>56</sup> Fe <sup>26+</sup> , <sup>84</sup> Kr <sup>36+</sup> |
|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| lon energy at the exit from the Nuclotron, MeV/n                                                    | 500-1000                                                                                                                               |
| Ion flux density,<br>particles/(cm <sup>2</sup> ·s)                                                 | <b>10<sup>3</sup>10</b> <sup>6</sup>                                                                                                   |
| Irradiation time per run, min                                                                       | 1-5                                                                                                                                    |
| Radiation dose, Gy                                                                                  | 1-3                                                                                                                                    |
| Maximum irradiation area in the scanning mode/ nonscanning mode, mm                                 | 100x100/Ø10                                                                                                                            |
| Flux uniformity for the<br>maximum irradiation area in<br>the scanning mode/<br>nonscanning mode, % | 5/10                                                                                                                                   |
| Beam FWHM at the target,<br>mm                                                                      | 25-35                                                                                                                                  |

The target station is located inside an artificial climate box

E. Syresin et al.

## TARGET STATION FOR ADS AND RELATED APPLICATIONS (SHINE)



#### **Beam parameters**

| lana                                      | <sup>12</sup> C <sup>6+</sup> , <sup>40</sup> Ar <sup>18+</sup> , <sup>7</sup> Li <sup>3+</sup> , <sup>1</sup> p <sup>1+</sup> , |  |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|
| IONS                                      | <sup>2</sup> D <sup>1+</sup>                                                                                                     |  |
| lon energy, GeV/n                         | 0.3-4.0                                                                                                                          |  |
| len intensity d/s                         | <sup>1</sup> P <sup>1+</sup> , <sup>2</sup> D <sup>1+</sup> - 10 <sup>10</sup>                                                   |  |
| ion intensity, 1/s                        | <sup>12</sup> C <sup>6+</sup> , <sup>7</sup> Li <sup>3+</sup> - 10 <sup>9</sup>                                                  |  |
| Nuclear impurities with non goal Z, %     | 5                                                                                                                                |  |
| Field of irradiation, mm                  | Ø <b>20-50</b>                                                                                                                   |  |
| Fluence at irradiation of a single object | >10 <sup>14</sup>                                                                                                                |  |

The target station is developed for nuclear power applications and ADS. Light ion beams at energy of 0.3-4 GeV/n are planned to be used for the corresponding research program. Light ions have a short path in the target, which reduces the probability of inelastic nuclear interactions and the required beam power for ADS.

Equipment of the target station involves: targets from C up Pb at length up 1.5 m and diameter up 35 cm, thin targets from Be to U at thickness 0.05-50 mm; beam diagnostic system; target diagnostic system on base of activation and track analysis; target position system; thermometry system; synchronization system; radiation control system; data acquisition system. *A. Baldin et al.* 

## The beams at this target station are also available for other directions of applied research

## III. Sample activities and selected results

## PILLARS OF APPLIED RESEARCH WITH NICA BEAMS

#### **Radiation effects in microelectronics**



accelerator-driven systems (ADS)

### SIMULATION OF SPACE RADIATION COMPONENTS: GALACTIC COSMIC RAYS

#### **Space radiation environment has 2 sources/types**

- Galactic Cosmic Rays (GCR) have atomic # 1≤ Z ≤ 92 and energies ~100s of MeV/nucleon and higher (shielding ineffective)
- Solar Particle Events (SPE) have # 1≤ Z ≤ ~26 and energies up to ~10s of MeV/nucleon (shielding can be effective)



## SPACE RESEARCH WORK PACKAGE: NEW COMPOSITE MATERIALS FOR SPACE INDUSTRY (PROTECTIVE PROPERTIES, RADIATION RESISTANCE, RADIATION-INDUCED MODIFICATION)

- Improving the regular means of radiation protection in spacecrafts for orbital flights and missions beyond the Earth magnetosphere.
- Study of shielding properties of existing and new composite materials.
- Investigation of radiation modification of composite materials by high-energy accelerated ion beams during long-term irradiation.



Project of the new Russian Orbital Service Station (ROSS)



Shielding material from the International Space Station (ISS)

New shielding material for the future Russian Orbital Service Station (ROSS)

ROSS





□ Structural, chemico-physical methods of research and testing.

□ Comparative studies under the influence of other types of ionizing radiation.

## **RADIATION TESTING OF ELECTRONICS WITH IONS OF RELATIVELY HIGH ENERGY**

#### Two types of radiation effects

- Cumulative (dose) effects result from long-term exposure to radiation environment
- Single-Event Effects (SEE) occur promptly due to a single particle strike

## Recent studies: 25-50% of spacecraft anomalies due to SEE (depends on spacecraft orbits)

## Increasing integration poses problems for SEE testing with low-energy beams

- Multiple die stacked together in packages.
- Behavior may differs if dis-assembled, tested separately.
- Packages now intrinsic to part performance.
- Dis-assembly may compromise timing, thermal and structural characteristics—especially if thinning required.

#### **SEE Frontiers:**

- 1. Technology Frontier
- 2. Low-Energy Frontier
- 3. High-Energy Frontier relevant to facilities like NICA



/R.C. Baumann, 2013 NSREC Short Course/

- Ideally, prefer test with ions' characteristic relevant to space
- GCR ions fairly flat out to >2 GeV/nucleon (min. ionizing)
- Difficult and expensive to achieve at accelerators



/By R.L. Ladbury at the Meeting of the American Physical Society, Columbus, OH, April 14-17, 2018/



## SAMPLE ACTIVITIES OF THE LIFE SCIENCES WORKING PACKAGE

- Molecular biology research (DNA damage and repair)
- Radiation genetics (gene and structural mutations)
- DNA repair protein biomarkers
- Aspects of the radiation-induced cell death (apoptosis, necrosis)
- Formation of chromosomal aberrations
- Different aspects of radiation-induced cancerogenesis
- Central nervous system disorders following the radiation exposure
- Development of radiation protection measures
- Improvement of beam delivery and dosimetry methods for radiotherapy

## **DNA** REPAIR PROTEIN MARKERS FOR CANCER CHARACTERIZATION

Studying the mechanisms and regularities of DNA repair in normal and cancer cells exposed to different types of radiation exposure (including ion beams produced by NICA facility) enables to identify specific protein markers associated with cancer.



Modified from W. Tinganelli and M. Durante. Carbon Ion Radiobiology. Cancers 2020, 12, 3022



## **DNA** REPAIR PROTEIN MARKERS FOR BREAST CANCER CHARACTERIZATION

An example is the characterization of the *triple-negative breast cancer (TNBC)* being a kind of breast cancer that does not have any of the receptors that are commonly found in this type of cancer. It is estrogen receptor (ER) negative, progesterone receptor (PR) negative and HER-2 low by immunohistochemistry or fluorescent in-situ hybridization.

The characterization method is based on determining the levels of several DNA repair proteins using specific antibodies against proteins in multiple DNA repair pathways. Possible set of antibodies :

**XPF** — nucleotide excision repair (NER),

FANCD2 — Fanconi Anemia/homologous recombination (FA/HR),

MLH1 — mismatch repair (MMR),

**pMK2** — MAPKAPKinase2, DNA damage response (DDR).

The DNA repair patterns exhibiting low XPF, pMK2, MLH and FANCD2 can be associated with shorter time to recurrence of the breast cancer.

A 4-antibody model is suggested to be able to segregate high risk and low risk groups based on time to recurrence of TNBC.







Immunohistochemistry patterns for the several DNA repair antibodies in one triple negative breast tumor

Alexander et al. Clin Cancer Res. 2010; 16(23):5796-804

## SEEKING FOR OVERALL PATTERNS OF DNA REPAIR IN DIFFERENT CANCER CELLS FOR FURTHER USE IN PREDICTION AND DIAGNOSTICS

Defining the DNA repair patterns both in its native form and following the exposure to ionizing radiation



Associated repair pathways Wu et al. Sci Rep. 2022; 12(1):3405

## STUDY OF BEHAVIORAL AND NEUROCHEMICAL OUTCOMES IN LABORATORY ANIMALS FOLLOWING APPLICATION OF CHEMICAL AND/OR RADIATION FACTORS

(Both for space-related research and for or preclinical studies using animals to investigate the potential of a therapeutic drug or strategy)

Probing the variety of behavioral reactions in laboratory animals following application of chemical and/or radiation factors:

- anxiolytic-/anxiogenic-like effects;
- sedative effects;
- depression model;
- locomotor activity;
- memory;
- stress-vulnerability, etc.

Application of behavioral test sets:

- Open Field;
- Elevated Plus Maze;
- Rotarod Performance Test;
- Passive Avoidance Task;







Seeking for most radiosensitive brain structures













## **STUDY OF RADIOLYTIC DAMAGE TO NEURAL CELL STRUCTURES**



Track structure of a 30 MeV proton and 1000 MeV/u <sup>56</sup>Fe ion in dendritic branches of pyramidal neuron, as viewed at picosecond, nanosecond, and microsecond after exposure

Belov et al., 2019-2021

### **RADIATION PROTECTION FRONTIER**

**Development and testing of pharmaceuticals for protecting** astronauts from space radiation on experimental models of laboratory animals



It has been established that recombinant human manganese-containing superoxide dismutase (rMnSOD), which has specific antioxidant and antiradical activity, is able to overcome the blood-brain barrier and penetrate into the midbrain, preventing radiation damage.



rMnSOD

0.25Gy+rMnSOD 0.5Gy+rMnSOD 1.0Gy+rMnSOD rMnSOD+1.0Gy

Localization of rMnSOD in brain tissue. Immunohistochemical analysis was performed by using specific antibody. The immunostaining was evident only in brain samples from rMnSOD-treated mice.

Cataldi, S.; Borrelli, A.; Ceccarini, M.R.; Nakashidze, I.; Codini, M.; Belov, O.; Ivanov, A., et al. Neutral Sphingomyelinase Modulation in the Protective/Preventive Role of rMnSOD from Radiation-Induced Damage in the Brain. Int. J. Mol. Sci. 2019, 20, 5431.

The ability of rMnSOD to reduce radiation-induced damage has been shown, both through a protective role associated with sphingomyelinase with an acidic pH optimum (aSMase), and through a prophylactic role through sphingomyelinase with a neutral pH optimum (nSMase).



Mouse liver after irradiation with or without protective or preventive rMnSOD treatment (a) representative liver histology by Caspase-1 immunohistochemical staining. (b) Quantification of Caspase-1 staining was performed using the ImageFocus software. Positive staining is indicated as low (+), medium (++), or high (+++). Only high positive staining was considered and was measured as a percentage of the total area. Data represent the mean + S.D. of three livers for each group. Significance, \* p < 0.05 with respect to the CTR, § p < 0.05 with respect to the irradiated samples, p < 0.05 with respect to 1.0 Gy + rMnSOD.

Cataldi S, Borrelli A, Ceccarini MR, Nakashidze I, Codini M, Belov O, Ivanov A, et al. Acid and Neutral Sphingomyelinase Behavior in Radiation-Induced Liver Pyroptosis and in the Protective/Preventive Role of rMnSOD. Int J Mol Sci. 2020, 21(9), 3281.

### **MATERIALS SCIENCE WORKING PACKAGE: IRRADIATION**

#### **OF HIGH-TEMPERATURE SUPERCONDUCTING TAPES**

- Development of methods for increasing the critical current of high-temperature superconductors (HTSC) by means of radiation modification (induction of pinning centers in the bulk of the superconductor).
- Comparative analysis of the critical current values upon irradiation of HTSC tapes with <sup>124</sup>Xe<sup>54+</sup> ions of 3.8 GeV/nucleon and protons of 660 MeV.
- Estimation of the stability of the effect of increasing the critical current in an irradiated superconductor.
- Development of equipment prototypes based on radiation-modified HTSC tapes and their testing.

**Methods for measuring** current-voltage characteristics, Hall coefficient, magnetoresistance, thermo-EMF coefficient, thermal conductivity coefficient, magnetic moment in the temperature range of 1.7–300 K and magnetic fields up to 8 T.





Irradiation of vertically and horizontally arranged HTSC tapes with and without copper content









0.1-0.2 mm



## RADIATION MODIFICATION OF POLYTETRAFLUOROETHYLENE (PTFE), POLYETHYLENE TEREPHTHALATE (PET), POLYETHYLENE (PE) AND POLYIMIDE (PI) FILMS

- Study of the processes of amorphization and recrystallization of polymers and nanocomposite materials.
- Investigation of regularities of radiation-chemical damages in PTFE, PET, PE and PI films.
- Establishment of regularities in radiolysis of condensed matter under the exposure to ion beams with energies of several GeV/nucleon.
- Development of ion-track technologies with "thick" targets and multilayer materials.





PTFE, PET, PE and PI films of 12, 20, 40, 50, 80 µm thick

Research methods: scanning and transmission electron microscopy, X-ray phase analysis, X-ray photoelectron spectroscopy and X-ray energydispersive elemental analysis, atomic force microscopy and low-temperature nitrogen sorption, wettability with respect to water and heptane, optical and infrared spectroscopy, infrared spectroscopy of frustrated total internal reflection. diffuse spectroscopy and specular reflection, laser Doppler strainmetry.



### STUDY OF RADIATION MODIFICATIONS IN SAPPHIRES $(AL_2O_3)$ AS A RESULT OF THE LONG-TERM HEAVY ION EXPOSURE

Study of structural modifications and the state of matter as a result of the accelerated ion beam exposure of on sapphires ( $Al_2O_3$ ).

Improvement of the "silicon on sapphire" technology in topics assuming the impact of relatively high-energy ions (deep space, radiation-resistant electronics for charged particle accelerators, etc.).



#### **Research methods used:**

atomic force microscopy; scanning electron microscopy; electron spectroscopy for chemical analysis; X-ray fluorescence analysis; mass spectrometry; thermal analysis.







\*Transparent wedge-shaped samples of crystalline alumina (sapphire) produced by the Vernel method.



### **NOVEL NUCLEAR TECHNOLOGIES WITH NICA BEAMS**

Accelerator Driven Systems (ADS) are the nuclear systems based on interaction of particle beams extracted from the accelerator with deeply subcritical quasyinfinite active zones consisting of the depleted (natural) uranium, thorium and spent nuclear fuel.

In previous years, the conditions which maximize the efficiency of ADSR were investigated. The optimal value of criticality coefficient of the core  $k_{eff}$  is in the range 0.985 - 0.988. It was suggested that the best choice for the converter is Be, especially for ion beams at low energy.

The maximum energy gain of protons is obtained at 1.5 GeV when they are accelerated in a LINAC, and at lower energy (0.75-1 GeV) when a cyclotron is used. In both situations ion beams starting with <sup>4</sup>He realize higher energy gain than protons. When particles are accelerated in a LINAC, at low accelerator length a beam of <sup>7</sup>Li with energy 0.25 AGeV represents the best option.

#### Within the next years the ADSR project will be concentrated on:

- Research activities, involving simulation study, on an optimal design of the target;
- Verification of a principally new concept of a system based on the use of ion beams instead of protons;
- Implementation of the first stage of experimental program focused on measurement of the neutron yields with different converter combinations.





IV. Ways to be involved in the ARIADNA collaboration on applied research at NICA

## **ARIADNA** COLLABORATIONS FOR APPLIED RESEARCH AT NICA

| <b>ARIADNA-LS Collaboration</b>                                                                                                                              | ARIADNA-MSTE Collaboration                                                                                                                                                                                              | ARIADNA-NPT Collaboration                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The Collaboration is being established in order<br>to perform experiments in the field<br>of life sciences at the NICA Complex with the<br>ARIADNA beamlines | The Collaboration is being established in<br>order to perform activities and<br>experiments in radiation materials science<br>and radiation testing of electronics at the<br>NICA Complex with the ARIADNA<br>beamlines | The Collaboration is being established in<br>order to facilitate novel developments for<br>nuclear technology at the NICA Complex<br>with the ARIADNA beamlines |
|                                                                                                                                                              | <b>Collaborating organizations</b>                                                                                                                                                                                      |                                                                                                                                                                 |

- 1. Joint Institute for Nuclear Research (Dubna, Int.)
- 2. Institute of Biomedical Problems, RAS (Moscow, Russia)
- 3. Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (Moscow, Russia)
- 4. Skobeltsyn Research Institute of Nuclear Physics, Moscow State University (Dubna, Russia)
- 5. Saint Petersburg State University (Saint Petersburg, Russia)
- 6. Tsyb Medical Radiological Research Centre (Obninsk, Russia)
- 7. Semenov Research Center of Chemical Physics, RAS (Moscow, Russia)
- 8. Institute of Theoretical and Experimental Biophysics, RAS (Moscow, Russia)

- 9. Moscow Institute of Physics and Technology (Dolgoprudny, Russia)
- 10. Kurnakov Institute of General and Inorganic Chemistry, RAS (Moscow, Russia)
- 11. National Research Nuclear University MEPhI (Moscow, Russia)
- 12. Joint Institute of High Temperatures, RAS (Moscow, Russia)
- 13. North Ossetian State University (Vladikavkaz, Russia)
- 14. Institute of Nuclear Problems of the Belarusian State University (Minsk, Belarus)
- 15. LLC Research and production company "Kvant-R" (Moscow, Russia)
- 16. LLC "S-Innovations" (Moscow, Russia)
- 17. LLC "SOL-Instruments" (Minsk, Belarus)
- 18. IC CANDLE, Yerevan, Armenia
- 19. Yerevan State University, Yerevan, Armenia

#### **157 participants**



## **ARIADNA** ACCESS



- Both academic and industrial groups are eligible to access the ARIADNA infrastructure.
- A correspondingng user policy at NICA is under development, which includes regulations on equipment use, bioethics, access to beamlines and to supportive user infrastructure, etc.
- Funding opportunities can also be provided on the basis of special-purpose grant programs launched for NICA by external funding agencies.
- Main counterpart from ARIADNA users: results need to be published!





## WAYS OF GETTING INVOLVED IN ARIADNA



- As a **member of ARIADNA collaboration**: get in touch with us and we will provided instructions on signing an MoU to become a member of the collaboration.
- As a **user:** just prepare and submit you proposal for consideration.
- As an ARIADNA partner: let us know how you think you/your research team or company can contribute to ARIADNA and we can prepare a relevant application to be discussed with NICA management.



## **THANK YOU FOR YOUR ATTENTION**