ALPACA Deadtime PSI2021

Livetime evaluation in ALPACA

Livetime: Fraction of time, where events are recorded properly

Divided here into different consecutive steps with **cumulative** reduction of livetime:

Livetime evaluation in ALPACA

Livetime: Fraction of time, where events are recorded properly

Divided here into different consecutive steps with **cumulative** reduction of livetime:

Livetime evaluation in ALPACA

Livetime: Fraction of time, where events are recorded properly

Divided here into different consecutive steps with **cumulative** reduction of livetime:

Se-76

Ba-136 (last part)

Cross-checking results from both approaches

no intrace pileup for gap analysis \rightarrow extract intrace pileup from pulser analysis

Comparing results from both approaches

Compare gap and pulser analyses:

For pulser analysis: remove deadtime caused by intrace pileups

 \rightarrow reproduce output of gap analysis

Comparing results from both approaches

Compare gap and pulser analyses:

For pulser analysis: remove deadtime caused by intrace pileups

 \rightarrow reproduce output of gap analysis

 \rightarrow Validates gap analysis

Conclusions

- Can evaluate effective livetime of all channels and investigate different contributions
- Test pulser necessary for steps beyond DAQ time gap investigation
- Results:
 - Se-76: ~ 80% (gaps only) \rightarrow ~ 75% (single performance) \rightarrow ~ 16% (combined)
 - Ba-136: ~ 90% (gaps only) → ~ 85% (single performance) → ~ 21% (combined) → Most deadtime introduced by failing PMT triggers
- Gap and pulser analysis cross-checked using time-difference distribution

BACKUP

What classes of deadtime do we have in ALPACA?

Deadtime: **Fraction of time** the DAQ was not able to start event recording on possible triggers

1st approach: "Gap analysis"

Check gaps between consecutive timestamps; report every gap > 100 ms

2nd approach: "Test pulser analysis"

Count number of test pulser events recorded; we know that it should be 30 Hz if no deadtime

Type 1) Intrace pileup; DAQ window blocked due to previous trigger

Gap analysis Se-76

Gap analysis Ba-136

Deadtime from intrace pileup

Intrace pileup

Efficiency to detect 2nd pulse

Even for very close pulses, no dependence on energy of 2nd visible \rightarrow looks like we have **no** energy-dependent trigger efficiency

Comparison: lifetime from gaps vs lifetime from pulser

Lifetime from pulser much lower \rightarrow presumably due to in-trace pileup: need to finish cross-check of methods!

Se-76 gap analysis

Channel Ge 1 Ge 2 Ge 3 Ge 5 Ge 5 Ge 7 Ge 8 PMT 0 PMT 1 PMT 2 PMT 3	Runtime [s] 321661 321706 321685 321678 321668 321692 321697 321678 321707 321580 321580 321580	lost time [s] 138058 42107 88249.1 87887.9 125583 53441.9 65591.3 105098 39718.6 298020 298024 298026 298020	loss fraction [%] 42.9204 13.0887 27.4334 27.3217 39.0412 16.6128 20.3892 32.6719 12.3462 92.6737 92.6751 92.6755 92.6736	life time fraction	
	life time fraction of complete system driven by PMTs				

Ba-136 PMT

BUG! -> MESSEUP UP TIMESTAMPS

Channel	Runtime [s]	lost time [s]	loss fraction [%]
PMT 0	-4.47383e+06	460977	-10.3038
PMT 1	-5.05044e+06	462843	-9.16441
PMT 2	-6.31792e+06	461060	-7.29765
PMT 3	-3.40227e+06	460978	-13.5491

Intermezzo: in ba136-05 timestamps are messed up

Ba-nat Ge

Lhannel	Runtime [s]	lost time [s]	loss fraction [%
Ge 1	172583	36034.9	20.8797
Ge 2	172583	36072.4	20.9015
Ge 3	172583	36030.9	20.8774
Ge 4	172583	36035.2	20.8799
Ge 5	172583	36037.9	20.8815
Ge 6	172583	36102.2	20.9187
Ge 7	172583	36030.4	20.8771
Ge 8	172583	36032.1	20.8781

Channel	Runtime [s]	lost time [s]	loss fraction [%]
PMT 0	172583	36029.5	20.8766
PMT 1	172583	36029.5	20.8766
PMT 2	172583	36029.5	20.8766
PMT 3	172583	36029.5	20.8766

Backup

Size of gaps in regular data taking much smaller than 60 s

Se-76 PMT

Char	nnel	Runtime	[s]	lost	time	[s]	loss	fraction	[%]
PMT	0	321580		29802	20		92.67	737	
PMT	1	321580		29802	24		92.67	/51	
PMT	2	321580		29802	26		92.67	755	
PMT	3	321580		29802	20		92.67	736	
	_								