

FOR NUCLEAR RESEARCH

1

Dielectron analysis: Results so far

Sudhir Pandurang Rode

Joint Institute for Nuclear Research (JINR), Dubna

Cross-PWG meeting

August 22, 2023

Outline

- Principle study: Possible improvement in the CB reduction.
 - > Ideal Pluto and UrQMD with no detector effect
 - Realistic case with Detector effect
- Implementation: Improvement with current reconstruction algorithm.
 - Pair analysis in UrQMD
- Efforts for further improvement
- Conclusion and Outlook

Motivation and Pre-requisite

Major source of combinatorial background: π^0 Dalitz decays (and conversions in beam pipe) where only one track is reconstructed whereas its partner is not.

- Assuming:
 - ✓ TPC inner radius: 40.3 cm
 - TPC outer radius 119.5 cm
 - TOF inner radius 146.5 cm

Low $p_{\rm T}$ track reconstruction with current algorithm

- → With current track reconstruction algorithm, low $p_{\rm T}$ tracks are not reconstructed properly even though full hit information is available in the detector for tracks with $p_{\rm T} \gtrsim 30$ MeV/c.
- [>] Question: in an ideal detector, what would be the maximum possible benefit in the CB reduction, if we were to detect the low pt tracks that enter the TPC ($p_T > 30$ Mev/c).

Principle study using Pluto and UrQMD

- > Pluto: single π^0 Dalitz decay.
- [>] UrQMD: Min. Bias BiBi at 9.2 GeV

JOINT INSTITUTE FOR NUCLEAR RESEARCH

Comparison with Data

- Analysis maybe sensitive to the shape of the pT and rapidity spectra.
- pT spectra of pions in Pluto is rescaled to match with the data.
- Rapidity spectra is reasonably reproduced without rescaling.

Strategy: Ideal scenario with no detector effect

JOINT INSTITUTE FOR NUCLEAR RESEARCH

- Divide the acceptance into fiducial and veto areas.
 - In this study, we use a very conservative fiducial region, |y| < 0.3 and veto is 0.3 < |y| < 1.0.
- Assume that electron is fully reconstructed if it has a pt > 110 MeV and it is reconstructed in TPC only if it has a 30 < pt < 110 MeV.</p>
- > Assume signal (N_s) is proportional to the number of Dalitz pairs with both legs $p_T > 200 \text{ MeV}$ and within |y| < 0.3
- > Assume background (N_b) is proportional to the square of the single tracks originating from Dalitz decay where one leg has pT > 200 MeV in |y| < 0.3 and other leg is not reconstructed.
- Absolute values of S/B in these slides have no meaning, however, the relative difference between them is meaningful.
- Close TPC cut: Assume ideal detector and that an electron with 30 < pt < 110 MeV and within an opening angle of 10 degrees of a reconstructed track is the partner of a Dalitz decay

Possible improvement in S/B

S = N_s = No of Dalitz pair in |y| < 0.3 with both legs pt > 200 MeV

 $B = (N_b)^2 = (No of single tracks from Dalitz in |y| < 0.3 with pt > 200 MeV with partner anywhere in fid. or veto$

<u>Pluto</u>

<u>Acc. |y| < 0.3</u> S/B = = 323 (absolute value has no meaning)

Maximum gain in S/B (assuming partner with pT > 30 MeV and opening angle <10 deg is fully recognized):

|y| < 0.3 S/B = 1259 ~ factor 4 improvement

<u>UrQMD</u>

<u>Acc. |y| < 0.3</u> S/B = 142

Maximum gain in S/B (assuming partner with pT > 30 MeV and opening angle <10 deg is fully recognized):

|y| < 0.3 S/B = 692 ~ factor 5 improvement

Strategy: Realistic scenario with detector

- Now with more realistic case, with detector effect.
- [>] UrQMD: Request 11 production: Min. Bias BiBi at 9.2 GeV
- > Pluto using MPD ROOT used for request 11: π^0 Dalitz decay.
- Applied track selection and PID cuts.
- ≻ |Vz| < 50 cm
- Nhits > 39
- > DCA < 3σ
- \rightarrow -1 < TPC nSigma_e < 2 σ
- > $|\text{TOF beta}| < 2\sigma$
- $^{\succ}$ TPC-TOF matching 2 σ for d ϕ and dz.
- Close TPC cut: Electron pool without TOF (TPC only tracks) and opening angle < 10 degrees.</p>

Mpdroot dev branch: 50110a2507fc3da34d55648c9e7912f319af5455

Possible improvement in S/B

S = N_s = No of Dalitz pair in |y| < 0.3 with both legs pt > 200 MeV

B = $(N_b)^2$ = (No of single tracks from Dalitz in |y| < 0.3 with pt > 200 MeV with partner anywhere in fid. or veto **Pluto**

<u>Acc. |y| < 0.3</u> S/B = = 229

Maximum gain in S/B (assuming partner with pT > 30 MeV and opening angle <10 deg is fully recognized):

|y| < 0.3 S/B = 1080 ~ factor 5 improvement

<u>UrQMD</u>

<u>Acc. |y| < 0.3</u> S/B = 101

Maximum gain in S/B (assuming partner with pT > 30 MeV and opening angle <10 deg is fully recognized):

|y| < 0.3 S/B = 8308 ~ **factor 8 improvement**

Implementation

Di-electron cocktail

- Shapes and Multiplicities are different in PHSD and UrQMD.
- Need to scale down to PHSD.

Strategy: Pair analysis

- Three electron pools:
 - Pool-1 for fully reconstructed tracks in fiducial area (|eta| < 0.3)</p>
 - Pool-2 for fully reconstructed tracks with loose cuts in whole acceptance.
 - Pool-3 with TPC only tracks.
- Step 1 -No further pairing: Tracks belonging to fully reconstructed π^0 Dalitz are tagged and not used for further pairing.
- Step 2 Close TPC cut: Track from Pool-1 is paired with tracks from Pool-3 and both tracks are removed as a potential Dalitz pair if they have M_{inv} < 120 MeV/c2 and opening angle < 10 degrees.</p>
- Step 3 Rest of the tracks with pt > 200 MeV from Pool-1 are paired among themselves to build ULS and LS pair spectra.

Selection cuts: Pair analysis

Request 25 \rightarrow **37M events:**

- 1. Fully reconstructed tracks: Pool 1
 - 1) |Vz| < 100 cm.
 - 2) DCA x,y,z < 3σ .
 - 3) Nhits > 39
 - 4) TPC nSigma -2 to 2 sigma at p = 0 and -1 to 2 sigma for p > 800 MeV/c
 - 5) TOF nSigma -2 to 2 sigma
 - 6) TOF matching -2 to 2 sigma
 - 7) Limiting the eta acceptance of the reconstructed track to 0.3
- 2. Cuts on Partner: Pool 2
 - 1) |Eta| < 2.5, Nhits > 10, pT > 50 MeV/c
 - 2) DCA > 3.5 sigma (only Dalitz rejection)
 - 3) |TPC nSigma| < 2 sigma, TOF nSigma < 2 Sigma with matching 2 Sigma
- 3. Cuts on Partner for Close TPC Cut: Pool 3
 - 1) |Eta| < 2.5, Nhits > 10, pT > 50 MeV/c
 - 2) DCA > 3.5 sigma
 - |TPC nSigma| < 2 sigma, Those tracks who DO NOT Matched in TOF (TPC ONLY).

- No further pairing: Pairing between Pool 1 and 2
 - 1. <u>Conversion Rejection</u>: Chi2 for the secondary vertex, pointing angle, DCA for e, distance to $PV \rightarrow$ **Same as Request 11**.
 - 2. <u>Dalitz rejection</u>: pairs with M < 120 MeV/c2
 - 3. Pairing: **pT** > **200 MeV/c**
- Close TPC Cut: Pairing between Pool 1 and 3
 - 1. Dalitz rejection: No further pairing of pairs with M < 120 MeV/c2
 - 2. Pairing: **pT > 200 MeV/c**

S/B: Pair analysis

Conversion electrons

- May have a sizable effect on the S/B.
- This contribution is removed manually (R < 1 cm) however, the cause of this should be investigated.

Significant contribution of electrons from γ conversion at R = 0 \rightarrow seems artificial since there is no material there.

S/B: Pair analysis

$0.2 < M < 1.5 \ GeV/c^2$	S/B	Significance
Before Close TPC Cut	0.035+/-0.002	3.486
After Close TPC Cut	0.061+/-0.003	6.100

Request 25 → **38M events**

~ 75% improvement after applying close TPC cut.

What's next?

Remaining tracks after Close TPC Cut

Trying to understand the origin of remaining background after close TPC cut.		
Total reconstructed tracks after close TPC cut:	1.70796e+06	
Below: Only Conversion and π^0 Dalitz sources are considered		
a. Track has Partner with pT < 35 MeV ($ \eta $ < 2.5):	433735 (~25%)	
b. Track has Partner inside TPC i.e. $35 < pT < 100$ MeV ($ \eta < 2.5$):	564974 (~33%)	
c. Track has Partner with pT > 110 MeV ($ \eta $ < 2.5):	272506 (~16%)	
Track is hadron:	104390 (~6%)	
Rest (Signal (η , etc), conversion, π^0 Dalitz whose partner outside TPC,) 332355 (~20%)		

- Is **b.** reflecting inefficiency of the current tracking algorithm for low p_T tracks? Need expert help to improve the low-p_T tracking reconstruction.
- <u>Additional and independent venue:</u>
 - ✓ Improve the overall eid efficiency using Machine Learning techniques (both TPC Only and TPC+TOF+ECal) → Will help in <u>improving the signal as well as S/B</u>.

PID using Machine Learning

Special thanks to <u>Igor Rufanov</u>

pT [GeV/c]

pT [GeV/c]

- Efficiency drops significantly as various track selection cuts are applied:
- No of hits in the TPC
- DCA
- TPC dEdX eID
- TOF Matching 2σ
- TOF beta
- **Ecal Matching**
- Ecal eID (E/p and Mass²)

This necessitates the use of Machine Learning approach.

Denominator: Generated spectrum of electron tracks from event generator (irrespective of whether track is "reconstructible" or not)

e[±], |n| < 1, PR < 2 cm

0.5

e[±]. lnl < 1. PR < 2 cm

Nhits > 39 + DCA < 3 σ

Nhits > 39 + DCA < 3 σ

Reconstructed/Genenerated pT

pT [GeV/c]

+ TPC + TOF (Matched and |β|<2σ) eID

Reconstructed/Genenerated p

pT [GeV/c]

1.5

Reconstructible: Particles should have MC points in the TPC (should reach the TPC) \rightarrow Not a well-defined category.

Neural Network: Multi-Layer Perceptrons (MLP)

Multilayer perceptron with one hidden layer.

The neurons are organized in layers and only allowing direct connections from a given layer to the following layer

Disclaimer: I am not an expert on Machine Learning. This is just for information

Response function

 α :

The neuron response function ρ maps the neuron input i_1, \ldots, i_n onto the neuron output

synapse function (κ) and neuron activation function (α)

$$\kappa: \ (y_1^{(\ell)}, ..., y_n^{(\ell)} | w_{0j}^{(\ell)}, ..., w_{nj}^{(\ell)}) \to \begin{cases} w_{0j}^{(\ell)} + \sum_{i=1}^n y_i^{(\ell)} w_{ij}^{(\ell)} & Sum, \\ w_{0j}^{(\ell)} + \sum_{i=1}^n \left(y_i^{(\ell)} w_{ij}^{(\ell)} \right)^2 & Sum \text{ of squares,} \\ w_{0j}^{(\ell)} + \sum_{i=1}^n | y_i^{(\ell)} w_{ij}^{(\ell)} | & Sum \text{ of absolutes,} \end{cases}$$

$$x \rightarrow \begin{cases} x & Linear, \\ \frac{1}{1+e^{-kx}} & Sigmoid, \\ \frac{e^x - e^{-x}}{e^x + e^{-x}} & Tanh, \\ e^{-x^2/2} & Radial. \end{cases}$$

The neuron response function ρ often separated into *these* functions:

 $\rho = \alpha \circ \kappa$

Input variables: Multi-Layer Perceptrons (MLP)

- Request 25 production is used.
- Only <u>negative particles</u> are studied at the moment.
- Electrons (e⁻) with Monte Carlo hit in TOF and Ecal: $(if(mcTr \rightarrow GetPdgCode() == 11 AND)$ $(mcTr \rightarrow GetNPoints(kTOF) == 0 OR)$ $mcTr \rightarrow GetNPoints(kECAL) == 0))$ continue;).
- For <u>non-electrons</u> no requirement \rightarrow all.
- → Total Signal \rightarrow PDG = 11 \rightarrow 346728.
- → Background → PDG != $11 \rightarrow 19728150$.
- Variables: <u>p, dEdx, Hits, E/p (<10),</u>
 <u>beta from TOF (>0.2) and Ecal,</u>
 <u>DCA, eta (<1.6) and phi30 (>0).</u>

JOINT INSTITUTE

Network performance

- Training sample divided into two sub-samples for training and checking the overtraining (3 combinations tried).
- Models corresponding to three cases are trained reasonably well.
- The Kolmogorov Smirnov test used for overtraining test: provides a p-value equal to the statistical probability that two samples are drawn from the same distribution.
- The <u>smaller the p</u>, the <u>greater the overtraining</u>. <u>As a rule of thumb</u>, it is recommended to try to reduce overtraining if <u>p < 0.01</u>, especially if the separation is visibly poorer for the testing samples than for the training samples.

Electron (e⁻) purity: MLP and Selection cuts

Purity

FOR NUCLEAR RESEARCH

Electron (e-) efficiency: MLP and Selection cuts

- ➤ Efficiency: <u>Numerator</u> → Reconstructed momentum distribution of e⁻ with Monte Carlo hit in TOF and Ecal within MLP response cut (0.2,0.3 etc) + Production radius < 2 cm + |eta| < 1.</p>
- Denominator → Generated momentum distribution of e⁻ with Monte Carlo hit in TOF and Ecal within Production radius < 2 cm + |eta| < 1.

FOR NUCLEAR RESEARCH

- Efficiency: <u>Numerator</u> → Reconstructed momentum distribution of e⁻ with Monte Carlo hit in TOF and Ecal within MLP response cut (0.2,0.3 etc) + Production radius < 2 cm + |eta| < 1.
- Denominator → Generated momentum distribution of e⁻
 within Production radius < 2 cm + |eta| < 1
 This is obtained by taking average of total spectrum (e[±]+e⁻)/2

Overall, the Machine Learning tool seems to be helping in improving the efficiency keeping purity to the maximum. 27

- 1) Using a close TPC track cut, a significant improvement in the S/B can be obtained.
- 2) Current tracking reconstruction algorithm brings about ~70-80% improvement.
- 3) Improving the tracking algorithm for low pt tracks could bring a larger improvement. Need a tracking expert on board.
- 4) Further improvement: currently, the e-id involves many (about 7) independent one-dimensional cuts. Use of Artificial Neural Networks or Machine Learning techniques hints at the improvement in the electron identification efficiency.

BACK-UP

Efficiency of e⁻ in the testing sample with MLP

Efficiency of e⁻ in the testing sample

Efficiency of e⁻ in the testing sample

32

- ➤ Efficiency: <u>Numerator</u> → Reconstructed momentum distribution of e⁻ with Monte Carlo hit in TOF and Ecal within MLP response cut (0.2,0.3 etc) + Production radius < 2 cm + |eta| < 1.</p>
- Denominator → Generated momentum
 distribution of e⁻ within Production radius < 2 cm
 + |eta| < 1. ← This is obtained by taking average
 of total spectrum (e[±]+e⁻)/2

50% Training

- Purity: <u>Numerator</u> → Reconstructed momentum distribution of e⁻ with Monte Carlo hit in TOF and Ecal within MLP response cut (0.2,0.3 etc) + |eta| < 1.
- Denominator → Reconstructed momentum distribution of all tracks with Monte Carlo hit in TOF and Ecal within MLP response cut (0.2,0.3 etc) |eta|
 < 1.

- ➤ Efficiency: <u>Numerator</u> → Reconstructed momentum distribution of e⁻ with Monte Carlo hit in TOF and Ecal within MLP response cut (0.2,0.3 etc) + Production radius < 2 cm + |eta| < 1.</p>
- Denominator → Generated momentum
 distribution of e⁻ within Production radius < 2 cm
 + |eta| < 1. ← This is obtained by taking average
 of total spectrum (e[±]+e⁻)/2

60% Training

- Purity: <u>Numerator</u> → Reconstructed momentum distribution of e⁻ with Monte Carlo hit in TOF and Ecal within MLP response cut (0.2,0.3 etc) + |eta| < 1.
- Denominator → Reconstructed momentum distribution of all tracks with Monte Carlo hit in TOF and Ecal within MLP response cut (0.2,0.3 etc) |eta|
 < 1.

- ➤ Efficiency: <u>Numerator</u> → Reconstructed momentum distribution of e⁻ with Monte Carlo hit in TOF and Ecal within MLP response cut (0.2,0.3 etc) + Production radius < 2 cm + |eta| < 1.</p>
- Denominator → Generated momentum
 distribution of e⁻ within Production radius < 2 cm
 + |eta| < 1. ← This is obtained by taking average
 of total spectrum (e[±]+e⁻)/2

40% Training

- Purity: <u>Numerator</u> → Reconstructed momentum distribution of e⁻ with Monte Carlo hit in TOF and Ecal within MLP response cut (0.2,0.3 etc) + |eta| < 1.
- Denominator → Reconstructed momentum distribution of all tracks with Monte Carlo hit in TOF and Ecal within MLP response cut (0.2,0.3 etc) |eta|
 < 1.

- ➤ Efficiency: <u>Numerator</u> → Reconstructed momentum distribution of e⁻ with Monte Carlo hit in TOF and Ecal within MLP response cut (0.2,0.3 etc) + Production radius < 2 cm + |eta| < 1.</p>
- Denominator → Generated momentum distribution of e⁻ with Monte Carlo hit in TOF and Ecal within Production radius < 2 cm + |eta| < 1.</p>

Purity: <u>Numerator</u> → Reconstructed momentum distribution of e⁻ with Monte Carlo hit in TOF and Ecal within MLP response cut (0.2,0.3 etc) + |eta| < 1.

50% Training

50% Overtraining test

Denominator → Reconstructed momentum distribution of all tracks with Monte Carlo hit in TOF and Ecal within MLP response cut (0.2,0.3 etc) |eta| < 1.

FOR NUCLEAR RESEARCH

 $\begin{array}{c} 0.8 \\ 0.8 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.4 \\ 0.2 \\ 0.5 \\$

- ➤ Efficiency: <u>Numerator</u> → Reconstructed momentum distribution of e⁻ with Monte Carlo hit in TOF and Ecal within MLP response cut (0.2,0.3 etc) + Production radius < 2 cm + |eta| < 1.</p>
- Denominator → Generated momentum distribution of e⁻ with Monte Carlo hit in TOF and Ecal within Production radius < 2 cm + |eta| < 1.</p>

- Purity: <u>Numerator</u> → Reconstructed momentum distribution of e⁻ with Monte Carlo hit in TOF and Ecal within MLP response cut (0.2,0.3 etc) + |eta| < 1.
- Denominator → Reconstructed momentum distribution of all tracks with Monte Carlo hit in TOF and Ecal within MLP response cut (0.2,0.3 etc) |eta|
 < 1.

Definitions of Efficiency and Purity using Selection cuts

Efficiency:

- Denominator: Generated momentum spectrum of Electron Monte Carlo tracks (-1 < eta < 1 and PR < 2 cm) (from generated sample/MC stack).</p>
- Numerator: Reconstructed momentum spectrum of electron tracks (-1 < eta < 1 and PR < 2 cm)</p>
 - > Nhits \geq 39
 - > DCA < 3 sigma</p>
 - Matched TOF and Ecal
 - > TPC dEdX (p dependent -1 (0) to 2 sigma)
 - > TOF β (-2 to 2 sigma)
 - ECal PID (E/p and mass2).
- Purity:
 - **Denominator**: Reconstructed momentum spectrum of all Tracks (-1 < eta < 1)
 - > Nhits
 - DCA < 3 sigma</p>
 - Matched in TOF and ECal
 - > TPC dEdX (p dependent -1 (0) to 2 sigma)
 - > TOF β (-2 to 2 sigma)
 - Ecal PID (E/p and mass2).
- <u>Numerator</u>: Same cuts but only electrons

Generated e[±] spectrum Reconstructible Non-Reconstructible 1.5 pT [GeV/c]

- JOINT INSTITUT FOR NUCLEAR RESEARCH
- Efficiency drops significantly as various track selection cuts are applied:
- No of hits in the TPC
- DCA
- TPC dEdX eID
- TOF Matching 2σ
- TOF beta
- **Ecal Matching**
- Ecal eID (E/p and Mass²)

This necessitates the use of Machine Learning approach.

- **Denominator:** Generated spectrum of electron tracks from event generator (irrespective of whether track is "reconstructible" or not)
- Reconstructible: Particles should have MC points in the TPC (should reach the TPC) \rightarrow Not a well-defined category.

1.5

- Efficiency drops significantly as various track selection cuts are applied:
- No of hits in the TPC
- DCA
- TPC dEdX eID
- TOF Matching 2σ
- TOF beta
- **Ecal Matching**
- Ecal eID (E/p and Mass²)

This necessitates the use of Machine Learning approach.

- Denominator: Generated spectrum of electron tracks from event generator (irrespective of whether track is "reconstructible" or not)
- Reconstructible: Particles should have MC points in the TPC (should reach the TPC) \rightarrow Not a well-defined category.

Efficiency drops

significantly as various

track selection cuts are

applied: No of hits in the TPC DCA TPC dEdX eID TOF Matching 2σ TOF beta **Ecal Matching** Ecal eID (E/p and Mass²) This necessitates the use of 1.5 2 Machine Learning approach. **Denominator:** Generated spectrum of electron tracks from event generator (only "<u>reconstructible</u>" tracks) Reconstructible: Particles should have MC points in the TPC (should reach the TPC) \rightarrow Not a well-defined

category.

0.5

pT [GeV/c]

1.5

0.5

pT [GeV/c]

1.5

- Efficiency drops significantly as various track selection cuts are applied:
- > No of hits in the TPC
- > DCA
- > TPC dEdX eID
- TOF Matching 2σ
- > TOF beta
- Ecal Matching
- Ecal eID (E/p and Mass²)

This necessitates the use of Machine Learning approach.

<u>Denominator</u>: Generated spectrum of electron tracks from event generator (only "<u>reconstructible</u>" tracks)
 <u>Reconstructible</u>: Particles should have MC points in the TPC (should reach the TPC) → Not a well-defined category.

Remaining CB after CTC

	Total reconstructed tracks after close TPC cut:	1.70796e+06	
\triangleright	Below: Only Conversion and pi0 Dalitz sources are considered		
	Track has Partner Inside TPC i.e. between 35 MeV < pT < 100 MeV:		564974
	hTrackIsNotElectron (Hadron):		104390
	Track has Partner with pT < 35 MeV:		433735
	Track has Partner with pT > 100 MeV:		272506
\triangleright	Rest:	332355	
-32	21	======	2694
-21	1	======	1
-13	3	======	11
-11			1886
11		======	20
13		======	9
22	photon - partner is outside TPC acceptance	======	107804
11	1 #pi^{0} - partner is outside TPC acceptance	======	79031
13	0	======	7434
22	1 #eta - partner is outside TPC acceptance	======	105725
32	1	======	4739
33	1	======	220

Minimum pt (in MeV) to enter TPC and TOF and exit TPC in various eta regions

Eta	theta	Min. Rad.	Min. pt	Min. Rad.	Min. pt	Min. Rad.	Min. pt
		of curv at	to	of curv.	to	at	to
		TPC	enter	at TPC	exit	TOF	enter
		entrance	TPC	exit	TPC	entrance	TOF
====:	=====		=====			=======	
0.000	90.00	20.15	30.22	59.75	89.62	73.25	109.88
0.050	87.14	20.18	30.26	59.82	89.74	73.34	110.01
0.100	84.28	20.25	30.38	60.05	90.07	73.62	110.42
0.150	81.44	20.38	30.57	60.42	90.64	74.08	111.11
0.200	78.62	20.55	30.83	60.95	91.42	74.72	112.08
0.250	75.82	20.78	31.17	61.63	92.44	75.55	113.33
0.300	73.06	21.06	31.60	62.46	93.69	76.57	114.86
0.350	70.34	21.40	32.10	63.45	95.17	77.78	116.67
0.400	67.67	21.78	32.68	64.59	96.89	79.19	118.78
0.450	65.05	22.22	33.34	65.90	98.85	80.79	121.19
0.500	62.48	22.72	34.08	67.38	101.06	82.60	123.90
0.550	59.97	23.28	34.91	69.02	103.53	84.61	126.92
0.600	57.52	23.89	35.83	70.83	106.25	86.84	130.25
0.650	55.13	24.56	36.84	72.82	109.23	89.28	133.91
0.700	52.82	25.29	37.94	75.00	112.49	91.94	137.91
0.750	50.57	26.09	39.13	77.36	116.04	94.84	142.25
0.800	48.39	26.95	40.42	79.91	119.87	97.97	146.95
0.850	46.29	27.88	41.82	82.67	124.00	101.34	152.02
0.900	44.25	28.88	43.32	85.63	128.44	104.97	157.46
0.950	42.29	29.95	44.92	88.80	133.20	108.87	163.30
1.000	40.40	31.09	46.64	92.20	138.30	113.03	169.55
1.050	38.57	32.32	48.47	95.83	143.74	117.48	176.22
1.100	36.82	33.62	50.43	99.69	149.54	122.22	183.33
1.150	35.14	35.01	52.51	103.8	155.72	127.27	190.90
1.200	33.52	36.48	54.73	108.2	162.28	132.63	198.95

NOTE: TPC Inner (40.3 cm) and outer radius (119.5 cm) values are taken from the analysis code and TOF inner radius (146.5 cm) value is taken from its TDR.

Current status

- 1) Limitations in Standard algorithm:
 - Hit requirement of 39 is too strong for low pT tracks.
 - Not able to reach pad rows above apogee (low $p_{\rm T}$ tracks stop before that).
 - In many cases, track stops even before apogee due to high χ^2 value (hence hit is not added to the track) \leftarrow this can be improved by performing **crossing angle correction** (more important for low $p_{\rm T}$ tracks).

Current status: Improvement due to crossing angle correction

- Many of the reconstructed hits corresponding to a particular track are not found and therefore not added to the track.
- Simulate single electron track using BOX generator for both with and without crossing angle correction to get hit distribution (After DCA selection).
- Crossing angle correction seems to
 Apart from crossing angle correction, what can be done? find more hits and therefore, added to the track.
 - Reduce number of hits on the partner.
 - Improve DCA parametrization at low pT.

Current status: Improvement in tracking + TPC efficiency

- Cuts: No of Hits, DCA and TPC PID.
- DCA parametrizations are updated at very low pT (enhances efficiency for tracks with Nhits > 20 but slight improvement for tracks with 39 hits → negligible effect on conversion rejection).
- Hits on the partner tracks reduced to 20.
- Effect of crossing angle correction.
- Observed improvement in the efficiency.

Invariant mass spectra of reconstructed conversion pairs in different production radius regions, before and after applying DCA selection.

Possible improvement in S/B

S = N_s = No of Dalitz pair in |y| < 0.3 with both legs pt > 200 MeV

B = $(N_b)^2$ = (No of single tracks from Dalitz in |y| < 0.3 with pt > 200 MeV with partner anywhere in fid. or veto **Pluto**

Acc. |y| < 0.3S/B = = 229 (For representation only)Maximum gain in S/B (assuming partner with pT > 30 MeV and opening angle <10 deg is fully recognized):</th>|y| < 0.3S/B = 1080 \leftarrow factor 5 improvementGain in S/B (i.e. using TPC current reconstruction software and requiring Nhits > 39 and opening angle < 10 deg.):</th>|y| < 0.3S/B = 326 \leftarrow factor 1.42 improvement

<u>UrQMD</u>

<u>Acc. y < 0.3</u>	S/B = 101 (For representation only)
Maximum gain i	n S/B (assuming partner with pT > 30 MeV and opening angle <10 deg is fully recognized):
y < 0.3	S/B = 8308 ← factor 8 improvement
Gain in S/B (i.e.	using TPC current reconstruction software and requiring Nhits > 39 and opening angle < 10
deg.) :	
y < 0.3	S/B = 128 ← factor 1.26 improvement