

Status of the BM@N experiment

M.Kapishin

Baryonic Matter at Nuclotron (BM@N) Collaboration:

5 Countries, 13 Institutions, 206 participants, 8 Institutions signed MoU + JINR

- University of Plovdiv, Bulgaria
- St.Petersburg University
- Shanghai Institute of Nuclear and Applied Physics, CFS, China;
- Joint Institute for Nuclear Research;
- Institute of Nuclear Research RAS, Moscow
- NRC Kurchatov Institute, Moscow combined with Institute of Theoretical & Experimental Physics, NRC KI, Moscow
- Moscow Engineer and Physics Institute
- Skobeltsyn Institute of Nuclear Physics, MSU, Russia
- Moscow Institute of Physics and Technics
- Lebedev Physics Institute of RAS, Moscow
- Institute of Physics and Technology, Almaty (associate member)

Accepted to Collaboration at the BM@N IB meeting on September 14:

- Physical-Technical Institute, Uzbekistan Academy of Sciences Tashkent
- High School of Economics, National Research University, Moscow

M.Kapishin

Configuration of BM@N detector in Xe run BM@N

For the next experimental run 2 Drift chambers DCH (12) are replaced with 2 big Cathode Strip Chambers CSC (13)

FST hit reconstruction in Xe run: 4 Si stations

Readout cards with defected chips in stations 2 and 3 are replaced Repair work to replace defected chips in station 4 is going on

See talk of N.Zamiatin

Details in talk of N.Zamiatin

Data reconstruction: $\Lambda \rightarrow p\pi^{-}$ and $K_{s}^{0} \rightarrow \pi^{+}\pi^{-}$ signals

Central tracking activities:

- optimize Vector Finder tracking algorithm
- improve alignment of silicon and GEM tracking detectors
- estimate FST and GEM detector efficiencies with central tracks

DCM-SMM predictions assuming 2% (Λ) and 0.5% (Ξ -) reconstruction efficiency \rightarrow 210k Λ and 550 Ξ - in 10M MB events

Experimental 10M events: 100k A and 220 E-

See talk of A.Zinchenko

A.Zinchenko, V.Vasendivna, J.Drnoyan

ToF-700 π +, K+, p, He3, d, t identification

S.Merts, I.Kozlov

Still need dedicated ToF calibration to constrict proton mass peak

Centrality selection with Hodoscope and FHCal detectors

FHCal

See talks of INR RAS group

Color bins – 10% of number of events in each bin

Current tasks for the Xe data analysis

Activities since the last Collaboration meeting in May:

- Optimization of the central tracking algorithm based on Vector Finder (Si+GEM): A.Zinchenko, V.Vasendina, J.Drnoyan
- alignment of the central and outer tracker
- implementation of a newly measured magnetic field map (S.Merts)
- few iterations to update / improve performance of the central track finder
- Version for data processing has been completed
- first processing of reconstruction of 300M events is done using DIRAC at Tier MLIT
- \rightarrow Reasonable signals of Λ and ${\rm K^0}_{\rm S}$

Task to be completed:

- Particle identification in ToF-400 detectors: M.Rumyantsev, M.Mamaev, I.Zhavoronkova, A.Huhaeva
- Particle identification in ToF-700 detectors: P.Alexeev, S.Merts
- need alignment of ToF-detectors with central tracks in magnetic field
- need calibration of time of flight to squeeze proton mass peak
- Centrality measurement with forward detectors: INR RAS team
- need pile-up corrections of fragment hodoscope signals (beam area)
- Topics of physics analyses:
- analysis of production of Λ, Ξ- hyperons, K⁰_S, K±, π± mesons, light nuclear fragments in Xe+CsI interactions;
- analysis of collective flow of protons, $\pi \pm$, light nuclear fragments
- search for light hyper-nuclei ${}_{\Lambda}H^3$, ${}_{\Lambda}H^4$

Plans for BM@N upgrade and physics runs

In fall 2024, physical run in the Xe beam is feasible (depends on the status of the NICA collider construction):

 \rightarrow beam energy scan in the range of 2-3 AGeV

 \rightarrow same central tracker configuration based on silicon FST and GEM detectors,

 \rightarrow additional 1st vertex plane of silicon STS detectors

 \rightarrow complete replacement of outer drift chambers with cathode strip chambers

- Physics run with Bi beam is possible after 2024, depends on the implementation of plans for the NICA collider
- To be ready for the experiment with Bi beam, further development of the central tracker is necessary: installation of additional stations of silicon detectors
- It is planned to put into operation a 2-coordinate (X/Y) neutron detector of high granularity to measure neutron yields and collective flow

Outer tracker: 2 big 2.1x1.5 m² cathode strip chambers installed

Team: A.Vishnevsky R.Kattabekov A.Makankin A.Morozov E.Martovitsky V.Spaskov

BM@N

1st big CSC was installed and operated in the Xe run 2nd big CSC has been tested with cosmic particles and installed for the next experimental run

 \rightarrow 2 big DCH chambers fulfilled their task to measure interactions of middle size nuclei !!!

Vertex two-coordinate Si-plane based on STS modules

A new Si-plane based on STS modules to be installed between the **Target** and **Forward Si-Tracker**. Motivation: to improve track and momentum resolution for the low-momentum particles

Vertex two-coordinate Si-plane based on STS modules

STS modules

- **Conceptual design of the vertex Si plane**
 - Vertex Si-plane will consist of 6 STS modules which are already assembled and tested;
 - Si-plane will be divided in two parts: upper and bottom halves;
 - Sensitive area of the plane: $\sim 175 \times 175$ mm²;
 - Mechanical design is being developed;

The new Si-plane will be installed and commissioned in the fall of 2024

High Granularity Neutron detector

~6m from the target

at 28°

Position of HGN detector at BM@N

 \rightarrow plan to construct in

2023-2024

dd the second se

44cm

one layer containing 121 cells with individual SiPM read-out

HGN detector parameters:

- 11 x 11 cells in one layer
- first layer works as VETO
- next layers: 3cm Cu + 2.5cm scintillator
- number of layers: 16 (~3 λ_{int})
- time resolution of one scint. cell ~ 100ps
- neutron detection efficiency: > 80% @ 1GeV

FPGA based fast TDC read-out with additional ToT amplitude measurement

M.Kapishin

BM@N experiment

Thank you for attention!

M.Kapishin

EOS of symmetric and asymmetric nuclear matter

BM@N experiment

Ch. Fuchs and H.H. Wolter, EPJA 30 (2006) 5

EOS: relation between density, pressure, temperature, energy and isospin asymmetry

$$E_A(\rho, \delta) = E_A(\rho, 0) + E_{sym}(\rho) \cdot \delta^2$$

with $\delta = (\rho_n - \rho_p)/\rho$ E/A(ρ_o) = -16 MeV

Curvature defined by nuclear incompressibility: $K = 9\rho^2 \ \delta^2(E/A)/\delta\rho^2$

Study symmetric matter EOS at ρ =3-5 ρ_0 \rightarrow elliptic flow of protons, mesons and hyperons

 \rightarrow sub-threshold production of strange mesons and hyperons

 \rightarrow extract K from data to model predictions

► Constrain symmetry energy E_{sym}

 \rightarrow elliptic flow of neutrons vs protons

 \rightarrow sub-threshold production of particles with opposite isospin

M.Kapishin

BM@N Experimental physics run in Xe beam with CsI target

BM@N: Estimated hyperon yields in Xe + Cs collisions

4 A GeV Xe+Cs collisions, multiplicities from PHSD model, Beam intensity $2.5 \cdot 10^5$ /s, DAQ rate $2.5 \cdot 10^3$ /s, accelerator duty factor 0.25

 $1.8 \cdot 10^9$ interactions $1.8 \cdot 10^{11}$ beam ions

Particle	E _{thr} NN GeV	M b<10 fm	٤ %	Yield/s b<10fm		Yield / 800 hours b<10 im		DCM-SMM
Λ	1.6	1.5	2	150		5·10 ⁷		x 0.75
[I]	3.7	2.3·10 ⁻²	0.5	0.55		2·10⁵		x 0.5
Ω	6.9	2.6·10 ⁻⁵	0.25	3.2·10 ⁻⁴		110		
Anti- Λ	7.1	1.5·10 ⁻⁵	0.5	3.7.10-4		130		
					-	\smile		-

DCM-SMM: reconstructed signals in 10M MB events: $2.10^5 \land$, 550 Ξ

GEM hit reconstruction: 7 stations + small **GEM** profile meter

GEM Hits

1