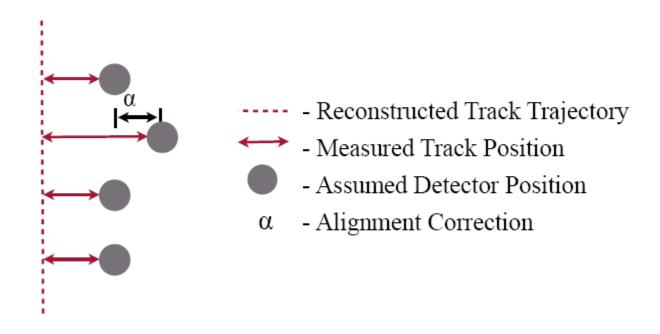
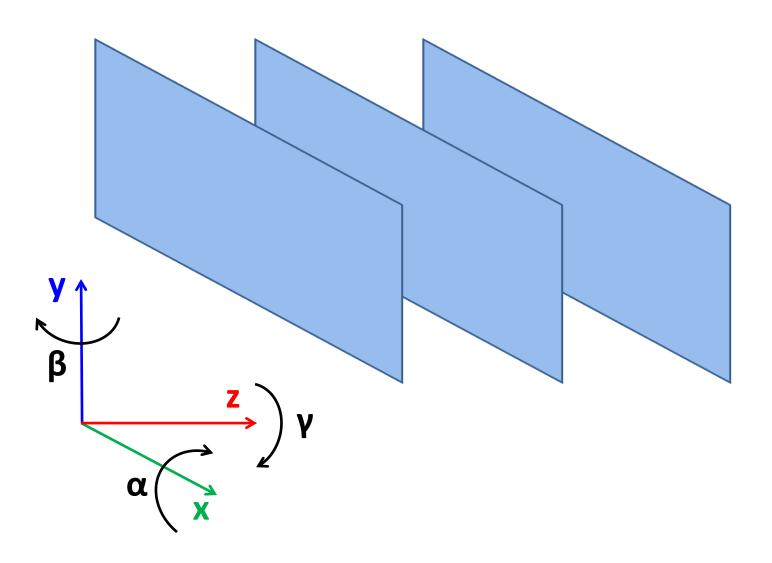
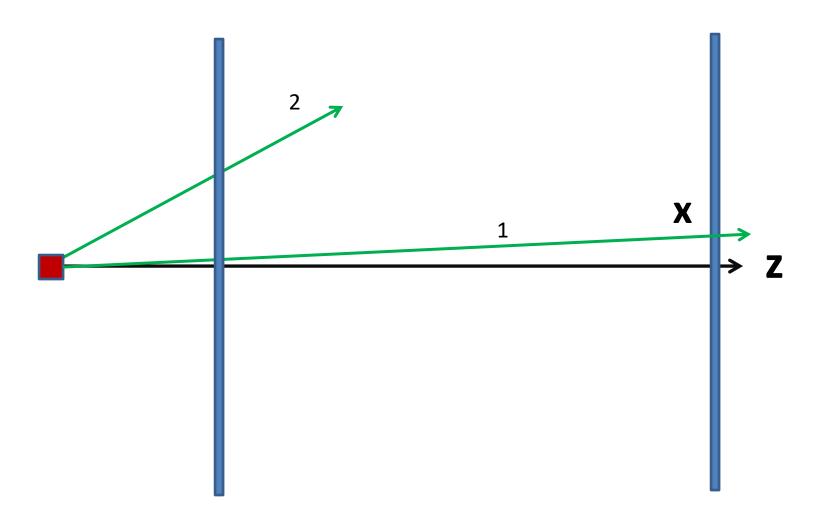

Status of geometry alignment of BM@N tracking detectors


Zarif Sharipov



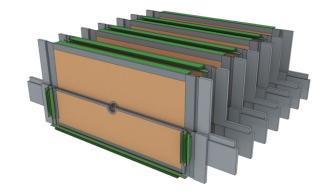


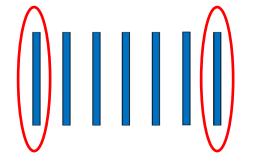
Analysis & Software Meeting of the BM@N Experiment

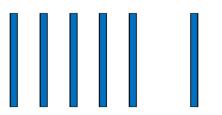
RUN 7651

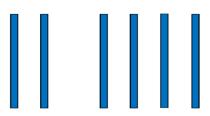
Period: 8

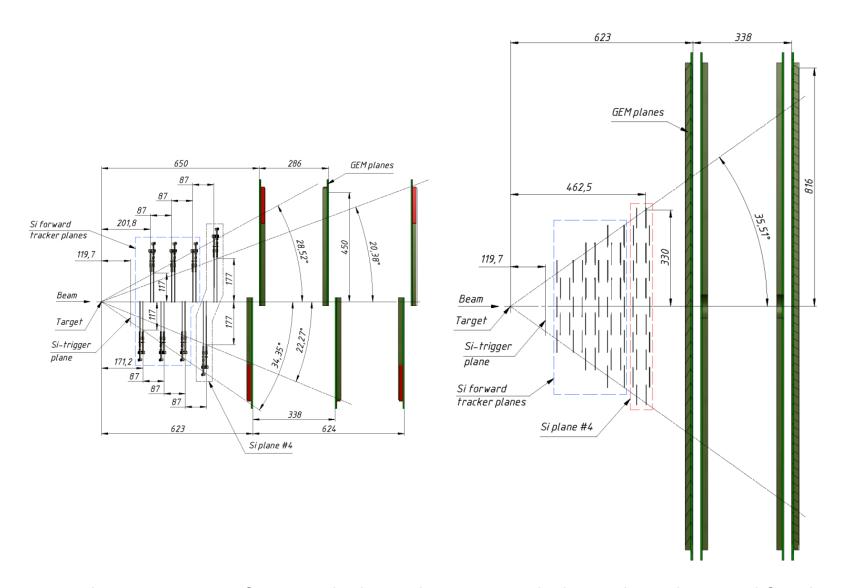
Number: 7651

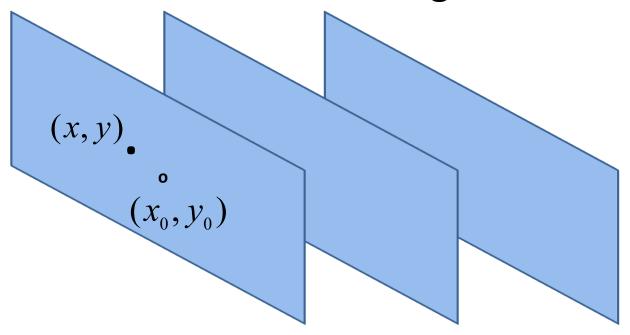

Beam: A = -1, Z = -1


Beam energy: 3.8 GeV


Target: A = -1, Z = -1


Field voltage: 0.2701 mV


N_events: 100000



Schematic view of Forward Silicon detectors including 4th Si plane and first large apperture GEM stations in YZ (left) and XZ (right) projections.

Analysis & Software Meeting of the BM@N Experiment

$$\Delta S^{2} = (x - x_{0})^{2} + (y - y_{0})^{2}$$

$$\chi^{2} = \sum_{i=1}^{n_{track}} \sum_{j=1}^{n_{det}} \frac{[\Delta S_{ij}(u_{ij}, \alpha_{i}^{t}, \alpha_{j}^{a})]^{2}}{\sigma_{j}^{2}}$$

Alignment for x and y

$$\mathbf{A}\mathbf{x} = \mathbf{B}$$

$$\Delta S_{ij} = u_{ij} - A_i z - B_i + du_j$$
 $\alpha_i = A_i, \quad i = 1, ..., n_t r$
 $\alpha_i = B_i, \quad i = n_t r + 1, ..., 2n_t r$
 $\alpha_i = du_j, \quad i = 2n_{tr} + 1, ..., 2n_t r + n_{det} - 2$

 N_d = 6 - number of detectors N_t = 5 - number of tracks $\alpha_1, \dots, \alpha_{10}$ - parameters of tracks $\alpha_{11}, \dots, \alpha_{14}$ - alignment parameters of the detectors

_					6				_	7			7
S ₂	0	0	0	0	S ₁	0	0	0	0	Z_2	Z_3	Z_4	Z_5
0	S_2	0	0	0	0	$S_\mathtt{1}$	0	0	0	Z_2	Z_3	Z_4	Z_5
0	0	S_2	0	0	0	0	S_1	0	0	Z_2	Z_3	Z_4	Z_5
0	0	0	S_2	0	0	0	0	S_1	0	Z_2	Z_3	Z_4	Z_5
0	0	0	0	S_2	0	0	0	0	S_1	Z_2	Z_3	Z_4	Z_5
S_1	0	0	0	0	N _d	0	0	0	0	1	1	1	1
0	S_1	0	0	0	0	N_{d}	0	0	0	1	1	1	1
0	0	S_1	0	0	0	0	N_{d}	0	0	1	1	1	1
0	0	0	S_1	0	0	0	0	N_{d}	0	1	1	1	1
0	0	0	0	S_1	0	0	0	0	N_{d}	1	1	1	1
Z_2	Z_2	Z_2	Z_2	Z_2	1	1	1	1	1	N_{t}	0	0	0
Z_3	Z_3	Z_3	Z_3	Z_3	1	1	1	1	1	0	N_{t}	0	0
Z_4	Z_4	Z_4	Z_4	Z_4	1	1	1	1	1	0	0	N_{t}	0
Z_5	Z_5	Z_5	Z_5	Z_5	1	1	1	1	1	0	0	0	N_{t}

- 1. Volker Blobel, Claus Kleinwort. A New method for the high precision alignment of track detectors (https://arxiv.org/abs/hep-ex/0208021)
- 2. https://www.desy.de/~kleinwrt/MP2/doc/html/draftman_page.html

Analysis & Software Meeting of the BM@N Experiment

Alignment for x, y and z

$$\Delta S_{ij}^2 = (x - x_0)^2 + (y - y_0)^2$$

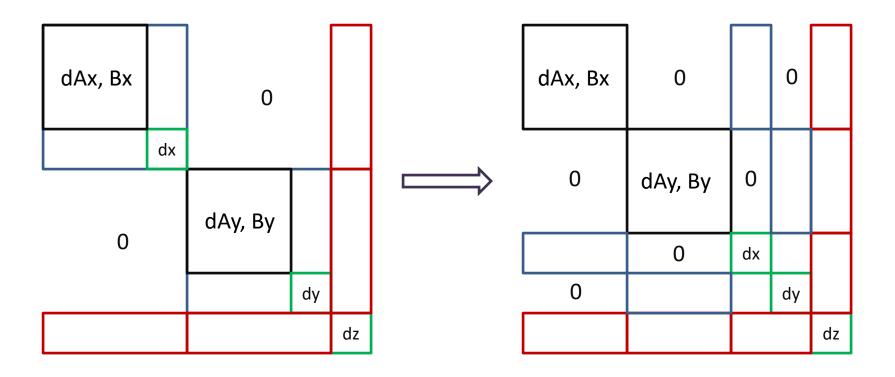
$$x = A_x z + B_x, \qquad y = A_y z + B_y$$

$$x = A_x (z + dz) + B_x$$

$$x = A_x z + A_x dz + B_x$$

$$x = (A_x^0 + dA_x)(z + dz) + B_x,$$

$$y = (A_y^0 + dA_y)(z + dz) + B_y$$


$$x = A_x^0 z + dA_x z + A_x^0 dz + dA_x dz + B_x$$

Analysis & Software Meeting of the BM@N Experiment

Alignment for x, y and z

dAx_i					Bx_i				dx_i					dz_i				
S ₂	0	0	0	0	S ₁	0	0	0	0	Z_2	Z ₃	Z_4	Z_5	 [$Ax_1^0z_2$	$Ax_1^0z_3$	Ax_1^0	Z ₄
0	S_2	0	0	0	0	S_1	0	0	0	Z_2	Z_3	Z_4	Z_5		$Ax_{2}^{0}z_{2}$	$Ax_{2}^{0}z_{3}$	Ax_2^0	Z ₄
0	0	S_2	0	0	0	0	S_1	0	0	Z_2	Z_3	Z_4	Z_5					
0	0	0	S_2	0	0	0	0	$S_{\mathtt{1}}$	0	Z_2	Z_3	Z_4	Z_5					
0	0	0	0	S_2	0	0	0	0	S_1	Z_2	Z_3	Z_4	Z_5					
S_1	0	0	0	0	N_{d}	0	0	0	0	1	1	1	1		Ax_1^0	Ax_1^0	Ax_1^0	
0	S_1	0	0	0	0	N_{d}	0	0	0	1	1	1	1		Ax_2^0	Ax_2^0	Ax_2^0	
0	0	S_1	0	0	0	0	N_{d}	0	0	1	1	1	1					
0	0	0	S_1	0	0	0	0	N_{d}	0	1	1	1	1					
0	0	0	0	$S_{\mathtt{1}}$	0	0	0	0	N_{d}	1	1	1	1					
Z ₂	Z_2	Z_2	Z_2	Z_2	1	1	1	1	1	N_{t}	0	0	0		$\sum_{i} Ax_{i}^{0}$	0		
Z ₃	Z_3	Z_3	Z_3	Z_3	1	1	1	1	1	0	N_{t}	0	0		$\Delta_l m_l$	$\sum_{i} A x$	0,	•••
Z_4	Z_4	Z_4	Z_4	Z_4	1	1	1	1	1	0	0	N_{t}	0		U	$\angle_i A^{\chi}$	-	40
Z ₅	Z_5	Z_5	Z_5	Z_5	1	1	1	1	1	0	0	0	N_{t}				\sum_{i}	Ax_i^0

Alignment for x, y and z

Principle of alignment

1. IMSL Fortran Library

(https://www.imsl.com/products/imsl-fortran-libraries)

2. Eigen

(https://eigen.tuxfamily.org/index.php?title=Main_Page)

3. Millepede-II

(https://www.desy.de/~kleinwrt/MP2/doc/html/draftman_page.html)