

Current Progress in Analysis of p,d,t production in 3.2 AGeV Argon-nucleus interactions

L.Kovachev^{1,2}, M.Kapishin¹ V.Plotnikov¹, Yu.Petukhov¹, I.Roufanov¹, A.Zinchernko¹

VBLHEP Joint Intitute for Nuclear Research, Russia
IMech Bulgarian Academy of Sciences, Bulgaria

Results of the analysis were presented at the 10th BM@N Collaboration meeting in May 2023 (L.Kovachev) and at the BM@N Analysis and Software meeting in September 2023 (L.Kovachev, M.Kapishin). Intermediate steps of the analysis were presented at the previous Collaboration meetings (L.Kovachev, V.Plotnikov).

Related analysis notes:

https://indico.jinr.ru/event/4165/attachments/17543/29918/Note_analAr_pdt3.pdf https://indico.jinr.ru/event/4165/attachments/17543/29919/Note_centrality_pdt_text.pdf https://indico.jinr.ru/event/4165/attachments/17543/29920/Flux_lumi_trigger.pdf https://indico.jinr.ru/event/4165/attachments/17543/29921/lumi.pdf

$< m_t >-m$ and dN/dy: dependence on y BM@N

$$\frac{d^2N}{dm_t dy} = \frac{dN/dy}{T_{eff}(m + T_{eff})} m_t exp(-\frac{m_t - m}{T_{eff}}) \to dN/dy \text{ and } < m_t > -m = T_{eff} + T_{eff}^2 / (m + T_{eff}) \to dN/dy$$

perform NA49 analysis (Phys.Rev.C 94 (2016) 4, 044906): fit $< m_t >$ values for protons and deuterons to extract T and $<\beta >$ values

$$\langle m_t \rangle - m = \langle E_t \rangle_{kin} \approx \langle E \rangle_{therm.} + \langle E \rangle_{flow} = \frac{3}{2}T + (\gamma - 1)m$$

 $\gamma = 1/\sqrt{1 - \langle \beta \rangle^2}$ $T^* = T\sqrt{\frac{1 + \langle \beta \rangle}{1 - \langle \beta \rangle}}$

<*m_t*>-*m* dependence on y for tritons, all targets, centrality 0-40%

Lalyo Kovachev BM@N Collaboration Meeting

Lalyo Kovachev BM@N Collaboration Meeting

dN/dy dependence on y for deuterons, centrality 0-40%

dN/dy dependence on y for deuterons, centrality 40-100%

Lalyo Kovachev BM@N Collaboration Meeting

BM@N

Coalescence factors B₂ and B₃

$$\begin{split} E_A \frac{d^3 N_A}{dp_A^3} &= B_A \bigg(E_p \frac{d^3 N_p}{dp_p^3} \bigg)^Z \bigg(E_n \frac{d^3 N_n}{dp_n^3} \bigg)^{A-Z} \\ &\approx B_A \bigg(E_p \frac{d^3 N_p}{dp_p^3} \bigg)^A, \end{split}$$

where E_A : Energy of the nucleus A and

with respect to its 3-momentum P_A

B_A is the coalescence parameter that

 $(d^{3}N_{A}/dp^{3}_{A})$: differential yield of nucleus A

characterizes the probability of nucleons to

 $\rightarrow B_A = d^2 N_A / 2\pi p_T dp_T (A) dy / [d^2 N_p / 2\pi p_T dp_T (p) dy)]^A, A = 2(d), 3(t)$

Coalescence parameter B_A depends on the nucleus mass number A, collision system, centrality, energy, and transverse momentum

form nucleus A.

B₂ and **B**₃ factors

Reaction	Ar+C	Ar+Al	Ar+Cu	Ar+Sn	Ar+Pb	BM@
$N_p \cdot N_t / N_d^2$	0.55 ± 0.10	0.62 ± 0.12	0.69 ± 0.11	0.60 ± 0.06	0.59±0.06	
<m<sub>t>-m_p</m<sub>	137 ± 2	172 ± 3	188 ± 3	189 ± 3	187 ± 3	
<m<sub>t>-m_d</m<sub>	144 ± 12	196 ± 8	211 ± 5	222 ± 6	212 ± 5	
T, MeV	76 ± 12	78 ± 7	87 ± 6	79 ± 5	85 ± 5	
<β>	0.12±0.08	0.22±0.03	0.22±0.03	0.26±0.03	0.23±0.03	

1.5

HADES (preliminary)

STAR (preliminary)

NA49

 $0.9 < y_{lab} < 1.7$ (-0.18 < y* < 0.62)

T and $<\beta>$ from $<m_t>$ for protons and deuterons: as in NA-49 analysis

28.11.2023

Lalyo Kovachev BM@N Collaboration Meeting

1000

- Results of the p,d,t analysis and possible physics messages are presented
- Measured coalescence factors B2 for deuterons and B3 for tritons rise with the transverse momentum, as predicted by the coalescence model
- Analysis of m_T spectra of protons and deuterons gives temperature T~80 MeV and <β> ~ 0.22-0.26 for Ar + Al-Pb; compared with HADES Au+Au at √s=2.4 GeV: T = 66±8 MeV and <β> = 0.34±0.02 (heavier nuclei)
- $N_p \cdot N_t / N_d^2 \sim 0.6$ for Ar + Al-Pb; compare with STAR and HADES results for Au+Au
- Compare mt and dN/dy spectra with DCM-SMM and PHMD models
- Plan to show results at seminars in JINR as preliminary

Thank you for your attention !