

Status of analysis of neutron data obtained with the compact TOF neutron spectrometer

N. Lashmanov*, V. I. Yurevich, S. A. Sedykh, V. Yu. Rogov, S. V. Sergeev, P. N. Grigoriev, V. V. Tikhomirov, A. A. Timoshenko

Joint Institute for Nuclear Research

Motivation:

Study of neutron emission in collisions of heavy nuclei at energies of several GeV per nucleon. Such data have a great interest for the development of theoretical models and codes.

Aim of the Neutron spectrometer in BM@N experiment:

Study of energy spectra of neutrons at large angles, in the region of fragmentation of target spectator, with beams of heavy nuclei of Nuclotron in energy range of 2 – 4 GeV/nucleon. The event-by-event data analysis with selection on the collision centrality is applied.

Requirements to the neutron spectrometer

Method		
TOF method, energy resolution $\Delta E/E < 20\%$ at $E = 200$ MeV		
Application of SiPMs in scintillation detectors		
Pulse shape discrimination with stilbene detectors		
Scintillation veto-detectors		
Measurements with small flight path $L < 50$ cm		

Task for BM@N run 2022-23 with Xe-ion beam

To prove that we are able to get reliable data on neutron spectra in energy interval 2 – 200 MeV in experimental conditions of the BM@N setup

BM@N Run 2022-2023 with Xe ions

- **Beam:** Beam of 124 Xe ions in vacuum beam pipe Typical beam intensity: $n \times 10^5$ ions/spill Spill duration: 2 - 3 s. Beam energy: 3.8 GeV/nucleon
- **Target:** CsJ (2%) $n = 3,64 * 10^{21}$ nuclei/cm²

Trigger for data taking:

Beam trigger (BT) = BC1 *VC(veto) * BC2

Fast Interaction Trigger (IT) = BT* $FD(A < A_{beam}) * BD(N > 3)$

Hits of Xe ions in the target position obtained with forward Si tracker

Scintillation photons are detected with SiPMs 6 x 6 mm², J ser. SensL : 4 SiPMs – coupled with stilbene crystal 2 SiPMs – coupled with Veto-scintillator

Neutron Detectors

(Stop pulse)

Stilbene crystal from Inrad Optics (USA) (1"diam. × 1")

Electronics chain

Neutron detection efficiency

$$\varepsilon = \left(1 - e^{-\Sigma h}\right) \left[\frac{\Sigma_H}{\Sigma} \left(1 - \frac{B_H}{E}\right) + \frac{\Sigma_C}{\Sigma} \left(1 - \frac{B_C}{E - E_H + E_0}\right)^{\alpha}\right]$$

 $\Sigma = \Sigma_c + \Sigma_H = n_C \sigma_{ch}(nC) + n_H \sigma(np)$

 $\sigma_{ch}(nC)$ – cross section of ch. particle production in reactions with carbon nuclei

 $\sigma(np)$ - cross-section of np scattering

- **h** the thickness of the stilbene crystal
- $\boldsymbol{B}_{\boldsymbol{c}}$ the threshold for reactions with carbon
- $\mathbf{B}_{\mathbf{h}}$ the threshold for recoil protons in np scattering

[*] S.D. Howe et al., NIM in Phys. Res. 227 (1984) 565.

Detector: NE-213 Diam.=51mm, H=25mm

E_{th}=0.45 MeV

TOF neutron spectrometers at accelerators in energy range from units to hundreds MeV

Beam	Detectors (cm)	E _{min.} (MeV)	L (M)	σ _t (ns)	σ _t /L (ns/m)	n/γ	Year
p, C Synchrophasotron JINR	Stilbene Ø5×5	2	1.2	500	417	Yes	2006
p Synchrotron (ITEP)	Plast. scintillator Ø20×20	7.5	1.5	~500	333	No	1982
p Synchrotron (ITEP)	Liquid scintillator Ø12.7×15.2	2.5	2, 3	670	~270	Yes	2005
Heavy lons BEVALAC	NE-102 101.6×25.4×10.2	150	4 - 14	~1000	250 - 140	No	1990
p LAMPF	BC-418 Ø5.08×5.08, Ø5.08×2.54	0.4	29-50	~1000	34 - 20	No	1992
р PS KEK	NE-213 Ø5.08×5.08, Ø12.7×12.7	1 3	0.75 1.3	500	666 - 385	Yes	1995
p SATURNE	NE-213 Ø12.7×5.1 NE-213 Ø16×20	2 4	~8.5	2000 1500	235 - 176	Yes	1999
Heavy lons HIMAC	NE-213 Ø12.7×12.7	5	3 - 5	1000	333 - 200	Yes	2001
Heavy lons Nuclotron (JINR)	Stilbene Ø2.5×2.5	1	0.3	110	367	Yes	2023
			Compact geometry	The bes resolution	The best resolution!		

Data analysis

Runs: 7579 ↔ 7982

Number of runs (IT): **138**

Data acquisition time : 86 hours

Conditions used for event selection

Fast Interaction Trigger (IT) = BT* FD(A<A_{beam}) * BD(N>3) Off-line B/A protection

Neutron event statistics

ND4 (95 ⁰):	28600
ND2 (121 ⁰):	18500

Corrections

DAQ busy correction

Time – pulse height correction to improve time resolution

Efficiency of neutron detectors

Selection of neutron events using pulse shape analysis

Neutron background contribution

Neutron production double-differential cross section

$$\frac{d^2\sigma}{dEd\Omega} = \frac{\Delta N}{\Delta E \cdot \Delta \Omega \cdot \varepsilon(E) \cdot n \cdot I \cdot k_1 \cdot k_2}$$

 ΔN - the number of detected neutrons;

 ΔE - the energy bin width;

 $\Delta\Omega$ - the solid angle for each neutron detector;

 $\varepsilon(E)$ - the neutron detection efficiency;

I - the number of beam particles on the target;

n - the number of target nuclei per 1 cm^2

 k_{l} - the correction factor taking into account dead time of DAQ .

 k_2 - the correction factor taking into account B/A protection time of 1.5 μs

Neutron detector	σ _{TOF}	σ _t	σ _{T0}	
ND4	117 ps	110 ps	38 ps	
ND2	120 ps	114 ps		

Time resolution

TQDC16VS module, TDC with 25- ps binning

$$\frac{\sigma_E}{E} = \gamma \left(\gamma + 1\right) \left[\left(\frac{\sigma_l}{l}\right)^2 + \left(\frac{\sigma_t}{t}\right)^2 \right]^{1/2}$$

 γ – the Lorentz factor

 $\frac{\sigma_t}{t}$ - the time resolution $\frac{\sigma_l}{t}$ - the uncertainty of flight path

Energy resolution

Pulse Shape Discrimination and Suppression of Background

[1] Nature, Sci. Rep. V.11 (2021) 3826[2] IEEE Trans. Nucl. Sci. V.61 (2014) 2410

Neutron background conditions

TOF spectrum of neutrons

Background neutron vertices

Geant4 (GNDL 4.7):

JEFF-3.3 JEFF-3.2 ENDF/B-VIII.0 ENDF/B-VII.1 BROND-3.1 JENDL-4.0u

TOF spectrum of neutrons

Preliminary results

Preliminary results

Preliminary results

Moving Source Model with 3 sources of neutrons

- **S2** and **S3** have very small velocities v_{ll} that corresponds to isotropic emission of neutrons from target spectator
- **S1** has high temperature and velocity $v_{\prime\prime} \approx 0.27c$ and describes a contribution from collision volume (participant region)

Mean multiplicity of neutrons from decay of the target spectator $\langle M_n \rangle = \langle M_n(S3) \rangle + \langle M_n(S2) \rangle = 9.0 + 3.9 = 12.9$ neutrons

Conclusion:

- □ The TOF neutron spectrometer with stilbene crystals and short flight path has been developed for measuring energy spectra of neutrons at large angles in the BM@N experiment
- \Box It is shown importance of n/ γ pulse shape discrimination for suppression of the γ -ray background
- As a result, preliminary energy spectra of neutrons were obtained in energy interval from 2 to 200 MeV and the analysis of data is continued
- □ The performed analysis proves that using the developed spectrometer we can obtain reliable neutron spectra in wide energy interval with good statistics
- □ Future plans to use the spectrometer for study of neutron emission in BM@N runs with heavy ion beams

