
V. Bocharnikov1, D. Derkach1, F. Ratnikov1, 

M. Golubeva2, F. Guber2, S. Morozov2,

P. Parfenov2,3


1HSE University, 2INR, Troitsk, 3MEPhI


BM@N Collaboration meeting, Dubna 

28-30.11.2023

ML methods of neutron identification 
and energy reconstruction using 

HGND



BM@N experiment
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Studies of Baryonic Matter at the Nuclotron 
(NICA, JINR Dubna)

•  Heavy-Ion beam with energies up to 4A GeV 
interacts with fixed target

➡ investigate the equation-of-state (EOS) of 
dense nuclear matter which plays a central 
role for the dynamics of core collapse 
supernovae and for the stability of neutron 
stars.

beam



• Neutron flow measurements are 
essential to further constrain 
symmetry energy 

• Sensitive observables: 

3

EOS for high baryon density matter

Symmetric matter

A. Sorensen et. al., arXiv:2301.13253 [nucl-th] (2023) 

The binding energy per nucleon:

- Isospin asymmetry
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Anisotropy flow coefficients:

Symmetry energy
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•16 layers: 3cm Cu (absorber) + 2.5cm Scintillator 
+ 0.5cm PCB; 1st layer  — ‘veto’  before 
➡Total length: ~1m, ~3 λin 
➡ neutron absorption ~100% 
•Transverse size: 44x44 cm2 

•11x11 scintillator cell grid

Active layerLongitudinal structure

Veto Cu Scint

•scintillator cells: 
•size: 4x4x2.5 cm3,  
•total number of cells: 1936 
• light readout by silicon photomultiplier  
•expected time resolution per cell: ~150 ps

       Highly granular time-of-flight neutron 
detector (HGND)



Experimental setup and                            
simulations
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Preliminary test configuration: 
•Neutron detector is located at 23º to the beam axis 
at ~5m from the target 

•  Monte-Carlo event simulations: 
•  DCM-QGSM-SMM model + Geant4  

•  ~500K events with fully simulated reactions 
Bi+Bi @ 3 AGeV (BM@N data rate up to ~10kHz)

~5m
HGND



Particles entering the HGND
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•  Logical volume on the HGND upstream surface is used to 
capture particles in the detector acceptance 
•  No access to hit-level labelling within event 

•  Primary neutrons:  
•  Produced in reaction  
•  Ekin > 0.4 GeV to minimise admixture of background 
neutrons  
•  Energy cut will be done after reconstruction to minimise 
bias 

•~14% of events with energy deposition in HGN have no 
particles entering through upstream surface 

•Neutron multiplicity is ~0/1 => event classification 
approach

Energy spectrum per particle type

Particle multiplicity



Imaging capabilities of the HGND
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Event type signatures: 
• tracks of charged particles 
• compact electromagnetic showers 
• sparse and irregular hadronic showers 

• no upstream track for neutral hadrons 
(including neutrons)

E/m shower background 
event

Signal neutron event

Charged particle track 
background event

Signal neutron event

we use HGND event image to identify 
neutron and ToF to reconstruct it’s 
energy 



EToF distribution per hit

Neutron ToF energy
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Fastest hit 
• naive reconstruction

• bias from fast hits (bg + 

time uncertainty)

Median of all hits 
• naive reconstruction

• more balanced uncertainty


• fast hits

• shower tails

Reference hit 
• MC truth hit with            

min(|EToF - En|) 

➡ suitable for event labelling

➡ additional estimation 

model required: fast, 
median, ML, etc

Events with a neutron  (>100 MeV) passing front wall of the HGN at angle <10º

Time-of-flight (ToF) 

energy for n hypothesis:





• hits with EToF>10GeV are 
rejected

EToF = mn( 1
1 − β2

− 1)

Visible correlation with target energy even by naive approach. 

En, GeV En, GeV En, GeV



Data labeling
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Observables per hit: 
•(x,y,z)hit 
•Edep (>3 MeV) 
•Thit+𝓝(0,𝜎 = 150ps) < 40ns

Signal event labeling: 
•neutron,  
•Ekin > 100 MeV,  
•Angle to detector axis < 10º 
•𝛿(EToF) < 40% 

272844 events in total 
with deposition >3 MeV

Energy correlation for selected signal events: 

• fastest   -   21917 signals 
•median  -   34670 signals 
•reference - 58949 signals

En, GeV En, GeV En, GeV



Reconstruction challenges
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•Small fraction of signal neutrons 
•Event contamination by background energy deposition 
•Neutron energy range is not typical for sampling calorimeters 

•0-5 GeV vs. 5-250+ GeV  
➡ low number of hits corresponding to a neutron, high fluctuations 
in energy deposition 

➡ Machine Learning - based reconstruction looks promising to 
deal with this challenges



Classification models
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Boosted Decision Tree (BDT) 

‘first-principle’ feature set based on global event properties and parameters of most 
informative hits.

•13 hand-crafted features

Graph neural network (GNN) 
• Graph event representation 
•Observables per graph node (hit): (x,y,z), Edep, EToF 

•Сaptures event topologies  
• Increasing number of successful implementations in HEP

2 classification models are trained independently for crosscheck
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Classification performance

• Same performance between GNN and BDT 
pairs for all 3 labelling approaches 

➡ all information is extracted from data in a 
given setting 

• Increasing signal fraction by loosening 
criteria of “good” neutron events gives 
dominating effect in classification 
performance
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Example of resulting energy spectra

Median(EToF) neutron energy estimation (naive approach):

scoreref >= 0 scoreref > 0.5 scoreref > 0.7

scoreref >= 0 scoreref > 0.5 scoreref > 0.7



Neutron reconstruction outlook

scoreref >= 0 scoreref > 0.5 scoreref > 0.7
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Refference ToF energy

•  Reference hit reconstruction will provide better energy resolution 
➡ GNN-based reconstruction method is under development  

•  Classification models rely on EToF distributions which may vary in different simulation settings 
➡ to be crosschecked  

•  Detailed MC truth information on event level can provide more hints to the classification 
models



Simplified estimation of coefficient measurement performance 
using classification-based neutron reconstruction in the HGND 
• Data source: all primary neutrons from initial DCM-QGSM-SMM 

Bi+Bi @ 3 AGeV reaction 

• MC truth information

• primary neutrons randomly sampled according to classifier 

efficiency

• mixed with uniformly distributed v1/2 as background (PT and Ycm 

are sampled from selected neutrons) according to classifier purity

• v1 vs YCM selection criteria:


• Ekin > 0.4 GeV

• Impact parameter  (6, 9) fm

• pT  (1., 1.5) GeV

➡ 279802 neutrons initially


v1/2 amplitude increases with purity, stat. uncertainty is affected by 
neutron reconstruction efficiency

∈
∈
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Anisotropic Flow Coefficients

• v2 vs Pt selection criteria:

• Ekin > 0.4 GeV

• Impact parameter  (6, 9) fm

• Rapidity in c.m.  (-0.2, 0.2)

➡ 1382287 neutrons initially

∈
∈

v1 vs rapidity distortion

v2 vs PT distortion



Influence of HGND time resolution on flow coefficients 
• Data source: all primary neutrons from initial DCM-QGSM-SMM 

Bi+Bi @ 3 AGeV reaction 

• MC truth information

• YCM and PT are converted to time at distance of 5.72m along p 

and recalculated after time smearing  

• v1 vs YCM selection criteria:


• Ekin > 0.5 GeV

• Impact parameter  (6, 9) fm

• pT  (1., 1.5) GeV


Time resolution effect gets noticeable only at forward rapidities

∈
∈
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Anisotropic Flow Coefficients
v1 vs rapidity

~HGND 
acceptance

~HGND 
acceptance

v2 vs pT

• v2 vs Pt selection criteria:

• Ekin > 0.5 GeV

• Impact parameter  (6, 9) fm

• Rapidity in c.m.  (-0.2, 0.2)

∈
∈

pT  and  rapidity cuts are on distorted values)



• Higher simulation statistics with different flow parameters in the model is needed to 
estimate neutron flow coefficient measurement performance in the HGND acceptance

➡ ability to include all reconstruction effects in the estimation  

➡ better understanding of background contributions


• CPU-heavy task

➡ Fast-sim methods are foreseen to be beneficial 
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Anisotropic Flow Outlook
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Summary
•  HGND at the BM@N provides additional information source to access the EOS of 
dense nuclear matter  

•  Challenging task of neutron reconstruction using hybrid time-of-flight and imaging 
calorimetry technique is discussed 

•  First estimation of neutron flow measurement performance is done 
•  A number of tasks were addressed for future studies 



Backup
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Angular spectrum per particle type Number of hits



GNN in High Energy Physics
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Why Graph Neural Networks: 
• Natural event representation 
• Easily applied to sparse data with variable 

input size 
• typically we have signal only in small 

fraction of sensors 
• Increasing number of successful 

implementations in HEP  
• Performance improvement in comparison 

with commonly used Gradient Boosting 
(GB) models (or Boosted Decision Tree 
(BDT) in HEP language)

Version August 22, 2022 submitted to Journal Not Specified 6 of 7

Figure 5. Dynamic Reduction Network and Boosted Decision Tree performance in the ECAL barrel
(left) and endcaps (right) as a function of generated transverse momentum.

The DRN shows an improved resolution by a factor of > 10 % compared to the BDT
for the whole momentum range.

To compare the performance in the actual analysis, the algorithms were also applied
on the simulated data for the di-photon invariant mass distributions of H ! gg. The
results are shown in Figure 6.

Figure 6. Di-photon invariant mass distributions of H ! gg events for both the Dynamic Reduction
Network and Boosted Decision Tree architectures in the ECAL barrel (left) and endcaps (right).

In this case, the DRN is able to obtain an improved resolution with respect to the BDT
by a factor of > 5% both in barrel and endcaps of the ECAL.

5. Conclusion
In this paper, we presented two novel ML approaches for the reconstruction in

calorimetry. Particularly, two different GNN-based architectures were developed for the
reconstruction of electromagnetic objects. The DeepSC model can be used for the clustering
of energy deposits in the ECAL as well as bring extra information on particle identification.
The DRN model predicts the energy corrections to be applied to electrons and photons.
Both methods show significantly improved performance in comparison to the current
reconstruction algorithms used for the ECAL.

Example on calorimeter 
energy resolution

• > 10% photon energy resolution improvement of 
GNN-based model compared to GB

P. Simkina, Machine learning techniques for calorimetry

https://arxiv.org/pdf/2007.13681.pdf
https://cds.cern.ch/record/2825519/files/CR2022_104.pdf
https://cds.cern.ch/record/2825519/files/CR2022_104.pdf
https://cds.cern.ch/record/2825519/files/CR2022_104.pdf


Classification models
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First principle model 
Gradient Boosting (GB) model with ‘first-
principle’ feature set based on global 
event properties and parameters of most 
informative hits.

•13 features in total 

•  Fastest hit parameters (4) 

•  Zmin hit parameters (4):

•  Global events parameters (6)  


•Maxdepth = 6

•<200 boosting rounds

Event structure model 
Graph neural network (GNN) 
•  (x,y,z), Edep, Thit (after first hit),EToF (optional)  
•  Fully connected hit graphs 
•  100 in batch 

•  2x GraphSage layers with 32 hidden channels 
+ batchnorm + dropout -> Self-attention pooling 
layer (1 node output) -> MLP readout layer 32-
>16->1 + sigmoid 

•  BCE loss function
GraphSAGE (SAmple and aggreGatE) architecture GNN:

Sample neighbourhood 
of graph nodes

Aggregate feature 
information from 

neighbours

Get graph context 
embeddings for node using 

aggregated information

Train/test split 50% for both models
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Classification models
CatBoost (BDT)  

first-principle feature set: 
1st hit: 


‘R_first’, - distance to (0,z)

‘Z_first’,

‘E_first’,


Zmin hit:

’dt_zmin’,

‘R_zmin', - distance to (0,z)

‘Z_zmin', 

‘E_zmin’,


Global:  

'Esum',

‘cogZ', - E-weighted average z

'cogR', - E-weighted average distance to (0,z)

'nHits',

'dt_stdev'
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Fastest hit labelling median labelling

Classification performance
“Best” hit labelling

• Overall classification 
performance slowly 
decreases with 
loosening criteria of 
“good” neutron events 
(ROC_AUC) 

• Larger signal/
background ratio gives 
better PR    

• Similar performance for 
BDT and GNN for all 3 
labelling approaches 

➡ ‘first-principle’ features 
look comprehensive in 
this setting

* some hints that models rely 
mostly on Max(EToF) distribution 

* some hints that models rely 
mostly on Med(EToF) distribution P =

TP
TP + FP

R =
TP

TP + FN TPR =
TP
P

FPR =
FP
N
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Region of interest: 
~ Precision threshold - exclude flat neutron flow 
hypothesis 
~ Recall threshold - covers most of neutron Ekin 
spectrum

MMU package for PR-uncertainties

Estimated region of interest

GBToF  GNNToF   

 GBnoToF   GNNnoToF

Recall

Pr
ec

isi
on •Similar performance using target feature EToF  

•Excluding EToF variable increases significance of 
event topologies for events with Nhits>1 => slight 
increase of GNN performance compared to GB  

•Possible limits of GNN performance: 
•Large fraction of single hit events and irregular 
event signatures for given dataset 
➡ GNN can be more beneficial at higher energies 
and higher detector granularities

https://proceedings.mlr.press/v206/urlus23a.html
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