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BM@N experiment
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Studies of Baryonic Matter at the Nuclotron
(NICA, JINR Dubna)

» Heavy-lon beam with energies up to 4A GeV
interacts with fixed target I

= nvestigate the equation-of-state (EOS) of
dense nuclear matter which plays a central
role for the dynamics of core collapse
supernovae and for the stability of neutron
stars.
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EOS for high baryon density matter

The binding energy per nucleon: EA (,0, 5) — EA (,0, O) -+ Esym (,0)52 -+ 0(54)
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Highly granular time-of-flight neutron

detector (HGND)

Longitudinal structure Active layer

\

\ photodetector

scintillator \
*16 layers: 3cm Cu (absorber) + 2.5cm Scintillator *scintillator cells:
+ 0.5cm PCB; 1st layer — ‘veto’ before esize: 4x4x2.5 cm3,
= Total length: ~1m, ~3 A, «total number of cells: 1936
= neutron absorption ~100% *light readout by silicon photomultiplier
* [ransverse size: 44x44 cm? »expected time resolution per cell: ~150 ps

» 11x11 scintillator cell grid
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Experimental setup and

simulations

cn-41

Target

Preliminary test configuration:

 Neutron detector is located at 23° to the beam axis
at ~dm from the target

« Monte-Carlo event simulations:

« DCM-QGSM-SMM model + Geant4

« ~500K events with fully simulated reactions
Bi+Bi @ 3 AGeV (BM@N data rate up to ~10kHz)



Particles entering the HGND

Energy spectrum per particle type

 Logical volume on the HGND upstream surface is used to 100 | ) PDG=11 PDG=2112
. . ] L1 PDG=13 [ 1 PDG=2212
capture particles in the detector acceptance 10°) | 1 PDG=22 PDG=3122
. . . . : 1 PDG=130 1 nuclei
¢ NO dCCesSS tO hlt'level Iabelhng Wlthln event 104'§ [ 1 PDG=211 prim neutrons
. ] [ 1 PDG=321
* Primary neutrons: 10%y |
: : | f S
* Produced in reaction 10, i
* Exin > 0.4 GeV to minimise admixture of background 10 ha
neutrons 10°; | i I'Ié niiimon [0 LS
* Energy cut will be done after reconstruction to minimise B GeVv
bias Particle multiplicity
_ o _ N particles in vacuum wall before detector
*~14% of events with energy deposition in HGN have no . "Det@27°
. . ' Edgep > 3 MeV
particles entering through upstream surface 0.7- Eun > 50 MeV/
T : pe . 0 1 all
* Neutron multiplicity is ~0/1 => event classification 5 061 1 neutrons
approaCh EZi prim. neutrons
Téos-
~0.2
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Imaging capabilities of the HGND

- . Charged particle track
Event type S|gnatures.. backoround sven
* tracks of charged particles
» compact electromagnetic showers
» sparse and irregular hadronic showers

* No upstream track for neutral hadrons
(including neutrons)

we use HGND event image to identify
neutron and ToF to reconstruct it’s
energy

E/m shower background
event




Neutron ToF energy

Time-of-flight (ToF) Fastest hit Median of all hits Reference hit
energy for n hypothesis: e naive reconstruction e naive reconstruction * MC truth hit with
£, =m( — 1) * bias from fast hits (bg +  + more balanced uncertainty min(|Evor - En| |
V1 -2 time uncertainty) e fast hits = suitable for event labelling
e shower tails = additional estimation
e hits with Eror>10GeV are model required: fast,

rejected median, ML, etc

EToF distributign per hit Events with a neutron (>100 MeV) passing front wall of the HGN at angle <10°

1 bg | —
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Visible correlation with target energy even by naive approach.



Data labeling

Observables per hit: Signal event labeling: 272844 events in total

o (X,,Z)hit *neutron, with deposition >3 MeV
*Edep (>3 MeV) *Exin > 100 MeV, _
'Th:'T'.N(O o = 150ps) < 40ns  “Angle to detector axis < 10° ‘fastest - 21917 signals

« §(ETor) < 40% ~emedian - 34670 signals
‘reference - 58949 signals

Energy correlation for selected signal events:
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Reconstruction challenges

* Small fraction of signal neutrons

* Event contamination by background energy deposition

*Neutron energy range is not typical for sampling calorimeters
*0-5 GeV vs. 5-250+ GeV

= [ow number of hits corresponding to a neutron, high fluctuations
In energy deposition

= Machine Learning - based reconstruction looks promising to
deal with this challenges
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Classification models

2 classification models are trained independently for crosscheck

Graph neural network (GNN) &y PyG
» Graph event representation
*Observables per graph node (hit): (X,y,2), Edep, EToF
» Captures event topologies
* Increasing number of successful implementations in HEP

Boosted Decision Tree (BDT) ¢ CatBoost

‘first-principle’ feature set based on global event properties and parameters of most
informative hits.

* 13 hand-crafted features
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Classification performance

0.35 Nl e NN i GNN fast » Same performance between GNN and BDT
0.30 BDT ref BDT med BDT fast pairs for all 3 labelling approaches
____________ = all information is extracted from data in a
% 0.25- e — given setting
3 ,/"” » Increasing signal fraction by loosening
2 0.20- 7~ criteria of “good” neutron events gives
S /7 dominating effect in classification
E 0.15- '.'! S —— performance
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Example of resulting energy spectra

3 score >= 0.0 score >= 0.5 score >= 0.7
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Neutron reconstruction outlook

Refference ToF energy

~

scoreret > 0.5 scoreres > 0.7

(o)}

0)

N
N

REf(ETOF), GeV
w
RG‘f(ETOF), GeV
"
Ref(ETOF)r GeV

N
N

E, GeV

» Reference hit reconstruction will provide better energy resolution
= GNN-based reconstruction method is under development

 Classification models rely on Etor distributions which may vary in different simulation settings
= to be crosschecked

» Detailed MC truth information on event level can provide more hints to the classification
models
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Anisotropic Flow Coefficients

Simplified estimation of coefficient measurement performance
using classification-based neutron reconstruction in the HGND

* Data source: all primary neutrons from initial DCM-QGSM-SMM
Bi+Bi @ 3 AGeV reaction

e MC truth information

* primary neutrons randomly sampled according to classifier
efficiency

* mixed with uniformly distributed v1,2 as background (Pt and Ycm
are sampled from selected neutrons) according to classifier purity

* v1 VS Ycm selection criteria: e Vo VS Pt selection criteria:
* Exin> 0.4 GeV e Exin> 0.4 GeV
* Impact parameter € (6, 9) fm e Impact parameter € (6, 9) fm
* pr€ (1, 1.5) GeV  Rapidity in c.m. € (-0.2, 0.2)
= 279802 neutrons initially = 1382287 neutrons initially

vi/2 amplitude increases with purity, stat. uncertainty is affected by
neutron reconstruction efficiency
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v1 Vs rapidity distortion
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v2 VS Pt distortion

16% s/n, 100% eff
o 49% s/n, 37% eff
e 63%s/n, 14% eff
e raw MC + selection
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Anisotropic Flow Coefficients

v1 VS rapidity

Influence of HGND time resolution on flow coefficients

» Data source: all primary neutrons from initial DCM-QGSM-SMM
Bi+Bi @ 3 AGeV reaction

e MC truth

iInformation

* Ycm and Pt are converted to time at distance of 5.72m along p

and reca
* V1VS YcMmSe

culated after time smearing
ection criteria:

 Exin> 0.5 GeV
* |Impact parameter € (6, 9) fm
e pr€ (1., 1.5) GeV

pr and rapidity cuts are on distorted values)

e Vo VS Pt selection criteria:
e Exin>0.5GeV

* |Impact parameter € (6, 9) fm
e Rapidity inc.m. € (-0.2, 0.2)

Time resolution effect gets noticeable only at forward rapidities

o

>

0.4- raw MC i
e 0+=100ps I
0.3+ o= 150ps i :
0.2/ © 0:=300ps }ii@
_— ;;jif!
-0 MU
o1 {;m*
1
~0.2: $4
—0.31 }*i ""HGND
acceptance
_0a]

0.06

0.05;

0.041 « 0:=300ps

0.03

0.01;

0.00{ § {

0.02;

—~1.00—0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00
Yem
V2 VS PT

raw MC
e 0:=100ps
e 0:=150ps

—0.02+

2

~HGND
acceptance

00 0.2 0.4

06 08 1.0 1.2
pr, GeV

1.4

10



Anisotropic Flow Outlook

* Higher simulation statistics with different flow parameters in the model is needed to
estimate neutron flow coefficient measurement performance in the HGND acceptance

= ability to include all reconstruction effects in the estimation
= better understanding of background contributions
 CPU-heavy task
= Fast-sim methods are foreseen to be beneficial
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Summary

« HGND at the BM@N provides additional information source to access the EOS of
dense nuclear matter

» Challenging task of neutron reconstruction using hybrid time-of-flight and imaging
calorimetry technique is discussed

* First estimation of neutron flow measurement performance is done
* A number of tasks were addressed for future studies

18
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Angular spectrum per particle type
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GNN in High Energy Physics

Why Graph Neural Networks:
* Natural event representation

- Easily applied to sparse data with variable <
input size 3
* typically we have signal only in small f
fraction of sensors e
* Increasing number of successful
implementations in HEP
» Performance improvement in comparison S
with commonly used Gradient Boosting iy

(GB) models (or Boosted Decision Tree
(BDT) in HEP language)

X4 Mg a
€41 €4i €41
[ X1 ‘mp (% )
. ,/k”“\\e //"“”\\e . ,rh_ﬂA‘e
21 31 e 1 - - 1 1 o
- X2 | X3 . M2 | > m3z . m21 | M31
- N4 "'\.,______,, L / ‘ L
Graph. Messages. Propagation.

J. Gilmer et al.,, “Neural message passing for quantum chemistry,”’ 2017.

Example on calorimeter
energy resolution

CMS Simulation Preliminary Vs =13 TeV
B L L L DL

P I ]
ECAL Endcaps -

C A & DRN ]
-k Run-2 BDT |

Photon

i%.4;.+-+—<{>-$—$—<{>—<[>—-cb—-@--d>—4>-®-@-®-—®-%b—-®:%

A T B
200 250
PT, true [GeV]

L L L Il L L | L L L
50 100 150

* > 10% photon energy resolution improvement of

NN-based model compared to GB

P. Simkina, Machine learning technigues for calorimetry
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Classification models

Event structure model &y PyG
Graph neural network (GNN)
* (X,Y,2), Edep, Thit (after first hit),Etor (optional)
* Fully connected hit graphs
* 100 Iin batch

» 2X GraphSage layers with 32 hidden channels
+ batchnorm + dropout -> Self-attention pooling
layer (1 node output) -=> MLP readout layer 32-
>16->1 + sigmoid

* BCE loss function

GraphSAGE (SAmple and aggreGatE) architecture GNN:

| HL label
) A
| Aggregate feature Get graph context
Sample neighbourhood information from embeddings for node using

of graph nodes neighbours aggregated information

First principle model ¢ CatBoost
Gradient Boosting (GB) model with ‘first-
principle’ feature set based on global
event properties and parameters of most
informative hits.
- 13 features In total

 Fastest hit parameters (4)

» Zmin hit parameters (4):

» Global events parameters (6)
* Maxdepth = 6
» <200 boosting rounds

Train/test split 50% for both models
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Classification models

CatBoost (BDT)

first-principle feature set:

1st hit:
‘R_first’, - distance to (0,2
‘Z_first’,
‘E_first’,

Zmin hit:
'dt_zmin’,
‘R_zmin’, - distance to (0,z)
‘Z_zmin',
‘E_zmin’,

Global:
'Esum’,
‘cogZ', - E-weighted average z
'cogR’, - E-weighted average distance to (0,z2)
'nHits’,
'dt_stdeV'
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Classification performance

Fastest hit labelling

0.91
0.8
0.7

n

o) 06'
0.5

Precisi

0.4-
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0.2;
0.1;

10800 signal events
125622 bg events

—— BDT (AP = 0.49)
GNN (AP = 0.48)

Precision

0.0
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Recall
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S
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- BDT (AUC = 0.89)
GNN (AUC = 0.89)
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False Positive Rate

median labelling

17208 signal events
119214 bg events

—— BDT (AP = 0.49)
GNN (AP = 0.48)

Precisio

20.71

S
= 0.3-
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Recall

- BDT (AUC = 0.85)
GNN (AUC = 0.84)
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False Positive Rate

“Best” hit labelling

0.91 =

0.8

0.7
c 0.61
0.5;
0.4
0.3
0.2
0.1

29330 signal events
107092 bg events

—— BDT (AP = 0.57)
GNN (AP = 0.57)

0.0
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S
= 0.3-

- BDT (AUC = 0.82)
GNN (AUC = 0.82)

0.0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9
False Positive Rate

» Overall classification
performance slowly
decreases with
loosening criteria of
“good” neutron events

(ROC_AUC)
* Larger signal/

background ratio gives
better PR

» Similar performance for
BDT and GNN for all 3
labelling approaches

= ‘first-principle’ features
look comprehensive In
this setting

* some hints that models rely
mostly on Med(Eor) distribution

* some hints that models rely

mostly on Max(Etor) distribution TP

P =
I'P+ FP

TP
R =
I'P+ FN

TP FP
P N
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Precision

1.0

G BnoToF GNN noToF

0.0

0.2

for PR-uncertainties

0.4

Recall

0.6

0.8

1.0

Region of interest:

~ Precision threshold - exclude flat neutron flow
hypothesis

~ Recall threshold - covers most of neutron Exin
spectrum

*Similar performance using target feature Etor

* Excluding Etor variable increases significance of
event topologies for events with Nnits>1 => slight
increase of GNN performance compared to GB

*Possible limits of GNN performance:

Large fraction of single hit events and irregular
event signatures for given dataset

= GNN can be more beneficial at higher energies
and higher detector granularities
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